Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The promise of metabolic phenotyping in gastroenterology and hepatology

Key Points

  • Spectroscopically directed metabolic profiling has the potential to enhance current capabilities in patient stratification

  • Examples of the contribution of metabolic profiling to disease diagnostics and prognostics as applied to liver and digestive diseases are widely present in the literature

  • Metabolic profiling provides insights about the function of gut bacteria, which are known to be involved in a wide range of pathologies including IBD, obesity, fatty liver and colorectal cancer

  • Surgical metabonomics centred on mass-spectrometry-linked intelligent surgical devices have the potential to deliver clinically relevant chemical information in real-time to augment clinical decision-making

Abstract

Disease risk and treatment response are determined, at the individual level, by a complex history of genetic and environmental interactions, including those with our endogenous microbiomes. Personalized health care requires a deep understanding of patient biology that can now be measured using a range of '-omics' technologies. Patient stratification involves the identification of genetic and/or phenotypic disease subclasses that require different therapeutic strategies. Stratified medicine approaches to disease diagnosis, prognosis and therapeutic response monitoring herald a new dimension in patient care. Here, we explore the potential value of metabolic profiling as applied to unmet clinical needs in gastroenterology and hepatology. We describe potential applications in a number of diseases, with emphasis on large-scale population studies as well as metabolic profiling on the individual level, using spectrometric and imaging technologies that will leverage the discovery of mechanistic information and deliver novel health care solutions to improve clinical pathway management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary diagram detailing the workflow involved in metabolic phenotyping studies.
Figure 2: Molecular information recovery.
Figure 3: Potential health-care impacts of population screening and stratified medicine technologies.

Similar content being viewed by others

References

  1. Nicholson, J. K. Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol. 2, 52 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ogino, S. et al. Interdisciplinary education to integrate pathology and epidemiology: towards molecular and population-level health science. Am. J. Epidemiol. 176, 659–667 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kalow, W. Pharmacogenetics and personalised medicine. Fundam. Clin. Pharmacol. 16, 337–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson, J. K. et al. Metabolic phenotyping in clinical and surgical environments. Nature 491, 384–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Holmes, E., Wilson, I. D. & Nicholson, J. K. Metabolic phenotyping in health and disease. Cell 134, 714–717 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Hood, L., Balling, R. & Auffray, C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol. J. 7, 992–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pimiento, J. M. et al. Melanoma genotypes and phenotypes get personal. Lab. Invest. 93, 858–867 (2013).

    Article  PubMed  Google Scholar 

  8. Nicholson, J. K., Holmes, E. & Wilson, I. D. Gut microorganisms, mammalian metabolism and personalized health care. Nat. Rev. Microbiol. 3, 431–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Salazar, N. et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin. Nutr. 34, 501-507 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Faith, J. J., Ahern, P. P., Ridaura, V. K., Cheng, J. & Gordon, J. I. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6, 220ra11 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Borgan, E. et al. Subtype-specific response to bevacizumab is reflected in the metabolome and transcriptome of breast cancer xenografts. Mol. Oncol. 7, 130–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Robinette, S. L., Lindon, J. C. & Nicholson, J. K. Statistical spectroscopic tools for biomarker discovery and systems medicine. Anal. Chem. 85, 5297–5303 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Ciccarelli, O. et al. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol. 13, 807–822 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Woo, J., Baumann, A. & Arguello, V. Recent advancements of flow cytometry: new applications in hematology and oncology. Expert Rev. Mol. Diagn. 14, 67–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y. W. et al. Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Technology (Singap. World Sci.) 2, 118–132 (2014).

    Google Scholar 

  16. Holmes, E. et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whiley, L. et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease. Neurobiol. Aging 35, 271–278 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Maher, A. D. et al. Optimization of human plasma 1H NMR spectroscopic data processing for high-throughput metabolic phenotyping studies and detection of insulin resistance related to type 2 diabetes. Anal. Chem. 80, 7354–7362 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hazen, S. L. New lipid and lipoprotein targets for the treatment of cardiometabolic diseases. J. Lipid. Res. 53, 1719–1721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cooper-Dehoff, R. M. et al. Is diabetes mellitus-linked amino acid signature associated with β-blocker-induced impaired fasting glucose? Circ. Cardiovasc. Genet. 7, 199–205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shariff, M. I. et al. Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: a validation study. J. Proteome Res. 10, 1828–1836 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Nicholson, J. K., Everett, J. R. & Lindon, J. C. Longitudinal pharmacometabonomics for predicting patient responses to therapy: drug metabolism, toxicity and efficacy. Expert Opin. Drug Metab. Toxicol. 8, 135–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Klootwijk, E. D. et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi's syndrome. N. Engl. J. Med. 370, 129–138 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Pan, Z. et al. Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism. Anal. Bioanal. Chem. 387, 539–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Plumb, R. et al. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 18, 2331–2337 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Shockcor, J. P. et al. Combined HPLC, NMR spectroscopy, and ion-trap mass spectrometry with application to the detection and characterization of xenobiotic and endogenous metabolites in human urine. Anal. Chem. 68, 4431–4435 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Duarte, I. F., Lamego, I., Rocha, C. & Gil, A. M. NMR metabonomics for mammalian cell metabolism studies. Bioanalysis 1, 1597–1614 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Jimenez, B. et al. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging and prognostication. J. Proteome Res. 12, 959–968 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Rocha, C. M. et al. NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma. Carcinogenesis 36, 68–75 (2014).

    Article  PubMed  CAS  Google Scholar 

  30. Veselkov, K. A. et al. Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc. Natl Acad. Sci. USA 111, 1216–1221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takats, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Crecelius, A. C. et al. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1093–1099 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Balluff, B. et al. De novo discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. J. Pathol. 235, 3–13 (2014).

    Article  PubMed  CAS  Google Scholar 

  34. Veselkov, K. A. et al. Recursive segment-wise peak alignment of biological 1H NMR spectra for improved metabolic biomarker recovery. Anal. Chem. 81, 56–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Vu, T. N. & Laukens, K. Getting your peaks in line: a review of alignment methods for NMR spectral data. Metabolites 3, 259–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crutchfield, C. A. et al. Comprehensive analysis of LC/MS data using pseudocolor plots. J. Am. Soc. Mass Spectrom. 24, 230–237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trygg, J., Holmes, E. & Lundstedt, T. Chemometrics in metabonomics. J. Proteome Res. 6, 469–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Madsen, R., Lundstedt, T. & Trygg, J. Chemometrics in metabolomics--a review in human disease diagnosis. Anal. Chim. Acta. 659, 23–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Doeswijk, T. G., Smilde, A. K., Hageman, J. A., Westerhuis, J. A. & van Eeuwijk, F. A. On the increase of predictive performance with high-level data fusion. Anal. Chim. Acta. 705, 41–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Cloarec, O. et al. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal. Chem. 77, 517–526 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Posma, J. M., Robinette, S. L., Holmes, E. & Nicholson, J. K. MetaboNetworks, an interactive Matlab-based toolbox for creating, customizing and exploring sub-networks from KEGG. Bioinformatics 30, 893–895 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Barupal, D. K. et al. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics 13, 99 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Trygg, J. & Wold, S. O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. J. Chemom. 17, 53–64 (2003).

    Article  CAS  Google Scholar 

  44. Jayaseelan, K. V. & Steinbeck, C. Building blocks for automated elucidation of metabolites: natural product-likeness for candidate ranking. BMC bioinformatics 15, 234 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Acar, E., Lawaetz, A. J., Rasmussen, M. A. & Bro, R. Structure-revealing data fusion model with applications in metabolomics. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 6023–6026 (2013).

    Google Scholar 

  46. Bro, R. et al. Data fusion in metabolomic cancer diagnostics. Metabolomics 9, 3–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Vaughan, A. A. et al. Liquid chromatography-mass spectrometry calibration transfer and metabolomics data fusion. Anal. Chem. 84, 9848–9857 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Cloarec, O. et al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal. Chem. 77, 1282–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Keun, H. C. et al. Heteronuclear 19F-1H statistical total correlation spectroscopy as a tool in drug metabolism: study of flucloxacillin biotransformation. Anal. Chem. 80, 1073–1079 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Posma, J. M. et al. Subset optimization by reference matching (STORM): an optimized statistical approach for recovery of metabolic biomarker structural information from 1H NMR spectra of biofluids. Anal. Chem. 84, 10694–10701 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Shariff, M. I. et al. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev. Gastroenterol. Hepatol. 3, 353–367 (2009).

    Article  PubMed  Google Scholar 

  52. Wallace, M. C., Preen, D., Jeffrey, G. P. & Adams, L. A. The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev. Gastroenterol. Hepatol. 9, 765–779 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Duricova, D., Burisch, J., Jess, T., Gower-Rousseau, C. & Lakatos, P. L. Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature. J. Crohns Colitis 8, 1351–1361 (2014).

    Article  PubMed  Google Scholar 

  54. O'Keefe, S. J. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dominguez-Bello, M. G., Blaser, M. J., Ley, R. E. & Knight, R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140, 1713–1719 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Joyce, S. A. & Gahan, C. G. The gut microbiota and the metabolic health of the host. Curr. Opin. Gastroenterol. 30, 120–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Pande, C., Kumar, A. & Sarin, S. K. Small-intestinal bacterial overgrowth in cirrhosis is related to the severity of liver disease. Aliment. Pharmacol. Ther. 29, 1273–1281 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Vonlaufen, A., Spahr, L., Apte, M. V. & Frossard, J. L. Alcoholic pancreatitis: a tale of spirits and bacteria. World J. Gastrointest. Pathophysiol. 5, 82–90 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mehal, W. Z. The gordian knot of dysbiosis, obesity and NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10, 637–644 (2013).

    Article  PubMed  Google Scholar 

  62. Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108, 4523–4530 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Claus, S. P. et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol. 4, 219 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tlaskalova-Hogenova, H. et al. Microbiome and colorectal carcinoma: insights from germ-free and conventional animal models. Cancer J. 20, 217–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Marcobal, A. et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 7, 1933–1943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Swann, J. et al. Gut microbiome modulates the toxicity of hydrazine: a metabonomic study. Mol. Biosyst. 5, 351–355 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Marchesi, J. R. et al. Towards the human colorectal cancer microbiome. PLoS ONE 6, e20447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Magnusdottir, S., Ravcheev, D., de Crecy-Lagard, V. & Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 6, 148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Raman, M. et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 11, 868–875 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Kelly, C. R. et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 109, 1065–1071 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Eiseman, B., Silen, W., Bascom, G. S. & Kauvar, A. J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854–859 (1958).

    CAS  PubMed  Google Scholar 

  72. Gough, E., Shaikh, H. & Manges, A. R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 53, 994–1002 (2011).

    Article  PubMed  Google Scholar 

  73. Weingarden, A. R. et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G310–G319 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Borody, T. J., Brandt, L. J. & Paramsothy, S. Therapeutic faecal microbiota transplantation: current status and future developments. Curr. Opin. Gastroenterol. 30, 97–105 (2014).

    Article  PubMed  Google Scholar 

  75. Colman, R. J. & Rubin, D. T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis. J. Crohns Colitis 8, 1569–1581 (2014).

    Article  PubMed  Google Scholar 

  76. Hanauer, S. B. & Sandborn, W. Management of Crohn's disease in adults. Am. J. Gastroenterol. 96, 635–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Seeley, E. H., Washington, M. K., Caprioli, R. M. & M'Koma, A. E. Proteomic patterns of colonic mucosal tissues delineate Crohn's colitis and ulcerative colitis. Proteomics Clin. Appl. 7, 541–549 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Maus, B. et al. Molecular reclassification of Crohn's disease: a cautionary note on population stratification. PLoS ONE 8, e77720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gerich, M. E. & McGovern, D. P. Towards personalized care in IBD. Nat. Rev. Gastroenterol. Hepatol. 11, 287–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Dawiskiba, T. et al. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World J. Gastroenterol. 20, 163–174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Williams, H. R. et al. Serum metabolic profiling in inflammatory bowel disease. Dig. Dis. Sci. 57, 2157–2165 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Fathi, F. et al. 1H NMR based metabolic profiling in Crohn's disease by random forest methodology. Magn. Reson. Chem. 52, 370–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Elliott, P. et al. Urinary metabolic signatures of human adiposity. Sci. Transl. Med. 7, 285ra62 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Shaukat, A. et al. Long-term mortality after screening for colorectal cancer. N. Engl. J. Med. 369, 1106–1114 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Mirnezami, R. et al. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects. Mol. Oncol. 8, 39–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Chan, E. C. Y. et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 8, 352–361 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, H. et al. 1H NMR-based metabolic profiling of human rectal cancer tissue. Mol. Cancer 12, 121 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhu, J. et al. Colorectal cancer detection using targeted serum metabolic profiling. J. Proteome Res. 13, 4120–4130 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Montrose, D. C. et al. Metabolic profiling, a noninvasive approach for the detection of experimental colorectal neoplasia. Cancer Prev. Res. 5, 1358–1367 (2012).

    Article  CAS  Google Scholar 

  92. Nishiumi, S. et al. A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS ONE 7, e40459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ibanez, C. et al. CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis 33, 2328–2336 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Tan, B. et al. Metabonomics identifies serum metabolite markers of colorectal cancer. J. Proteome Res. 12, 3000–3009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cross, A. J. et al. A prospective study of serum metabolites and colorectal cancer risk. Cancer 120, 3049–3057 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Silva, C. L., Passos, M. & Camara, J. S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer 105, 1894–1904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Eisner, R., Greiner, R., Tso, V., Wang, H. & Fedorak, R. N. A machine-learned predictor of colonic polyps based on urinary metabolomics. BioMed Res. Int. 2013, 303982 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Goedert, J. J. et al. Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis 35, 2089–2096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Phua, L. C. et al. Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol. Ther. 15, 389–397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wedemeyer, H., Dore, G. J. & Ward, J. W. Estimates on HCV disease burden worldwide - filling the gaps. J. Viral Hepat. 22 Suppl 1, 1–5 (2015).

    Article  PubMed  Google Scholar 

  101. Trepo, C., Chan, H. L. & Lok, A. Hepatitis B virus infection. Lancet 384, 2053–2063 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Gomaa, A. I., Khan, S. A., Toledano, M. B., Waked, I. & Taylor-Robinson, S. D. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J. Gastroenterol. 14, 4300–4308 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wiessing, L. et al. Hepatitis C virus infection epidemiology among people who inject drugs in Europe: a systematic review of data for scaling up treatment and prevention. PLoS ONE 9, e103345 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Gomaa, A. I., Hashim, M. S. & Waked, I. Comparing staging systems for predicting prognosis and survival in patients with hepatocellular carcinoma in egypt. PLoS ONE 9, e90929 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kohli, A., Shaffer, A., Sherman, A. & Kottilil, S. Treatment of Hepatitis C: A systematic review. JAMA 312, 631–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Ladep, N. G. & Taylor-Robinson, S. D. Management of liver disease in Nigeria. Clin. Med. 7, 439–441 (2007).

    Article  Google Scholar 

  107. Beyoglu, D. & Idle, J. R. The metabolomic window into hepatobiliary disease. J. Hepatol. 59, 842–858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dumas, M. E., Kinross, J. & Nicholson, J. K. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 146, 46–62 (2014).

    Article  PubMed  Google Scholar 

  109. Cassol, E. et al. Plasma metabolomics identifies lipid abnormalities linked to markers of inflammation, microbial translocation, and hepatic function in HIV patients receiving protease inhibitors. BMC Infect. Dis. 13, 203 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, A. H., Sun, H., Han, Y., Yan, G. L. & Wang, X. J. Urinary metabolic biomarker and pathway study of hepatitis B virus infected patients based on UPLC-MS system. PLoS ONE 8, e64381 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ladep, N. G. et al. Discovery and validation of urinary metabotypes for the diagnosis of hepatocellular carcinoma in West Africans. Hepatology 60, 1291–1301 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Bosch, F. X., Ribes, J., Diaz, M. & Cleries, R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5–S16 (2004).

    Article  PubMed  Google Scholar 

  113. Patel, M. et al. Hepatocellular carcinoma: diagnostics and screening. J. Eval. Clin. Pract. 18, 335–342 (2012).

    Article  PubMed  Google Scholar 

  114. Johnson, P. J. Role of alpha-fetoprotein in the diagnosis and management of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 14, S32–S36 (1999).

    Article  PubMed  Google Scholar 

  115. Farinati, F. et al. Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: Both or neither? Am. J. Gastroenterol. 101, 524–532 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Bedossa, P. & Poynard, T. An algorithm for the grading of activity in chronic hepatitis, C. The METAVIR cooperative study group. Hepatology 24, 289–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Ishak, K. et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 22, 696–699 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Baranova, A., Lal, P., Birerdinc, A. & Younossi, Z. M. Non-invasive markers for hepatic fibrosis. BMC Gastroenterol. 11, 91 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Regev, A. et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am. J. Gastroenterol. 97, 2614–2618 (2002).

    Article  PubMed  Google Scholar 

  120. de Groen, P. C., Gores, G. J., LaRusso, N. F., Gunderson, L. L. & Nagorney, D. M. Biliary tract cancers. N. Engl. J. Med. 341, 1368–1378 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Zabron, A., Edwards, R. J. & Khan, S. A. The challenge of cholangiocarcinoma: Dissecting the molecular mechanisms of an insidious cancer. Dis. Model. Mech. 6, 281–292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sithithaworn, P., Yongvanit, P., Duenngai, K., Kiatsopit, N. & Pairojkul, C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci. 21, 301–308 (2014).

    Article  PubMed  Google Scholar 

  123. Khan, S. A., Thomas, H. C., Davidson, B. R. & Taylor-Robinson, S. D. Cholangiocarcinoma. Lancet 366, 1303–1314 (2005).

    Article  PubMed  Google Scholar 

  124. Shariff, M. I. et al. Characterization of urinary biomarkers of hepatocellular carcinoma using magnetic resonance spectroscopy in a Nigerian population. J. Proteome Res. 9, 1096–1103 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Canbakan, B. et al. Clinical, biochemical and histological correlations in a group of non-drinker subjects with non-alcoholic fatty liver disease. Acta Gastroenterol. Belg. 70, 277–284 (2007).

    CAS  PubMed  Google Scholar 

  126. Dyson, J. K., Anstee, Q. M. & McPherson, S. Non-alcoholic fatty liver disease: a practical approach to diagnosis and staging. Frontline Gastroenterol. 5, 211–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. LaBrecque, D. R. et al. World Gastroenterology Organisation global guidelines: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 48, 467–473 (2014).

    Article  PubMed  Google Scholar 

  128. Corey, K. E. & Kaplan, L. M. Obesity and liver disease: The epidemic of the twenty-first century. Clin. Liver Dis. 18, 1–18 (2014).

    Article  PubMed  Google Scholar 

  129. Gomaa, A. I., Khan, S. A., Leen, E. L., Waked, I. & Taylor-Robinson, S. D. Diagnosis of hepatocellular carcinoma. World J. Gastroenterol. 15, 1301–1314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Barr, J. et al. Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. J. Proteome Res. 9, 4501–4512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Barr, J. et al. Obesity-dependent metabolic signatures associated with nonalcoholic fatty liver disease progression. J. Proteome Res. 11, 2521–2532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. & Nicholson, J. K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl Acad. Sci. USA 106, 14728–14733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yap, I. K. et al. Metabolome-wide association study identifies multiple biomarkers that discriminate north and south Chinese populations at differing risks of cardiovascular disease: INTERMAP study. J. Proteome Res. 9, 6647–6654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Arteaga, C. L. et al. Treatment of HER2-positive breast cancer: Current status and future perspectives. Nat. Rev. Clin. Onc. 9, 16–32 (2012).

    Article  CAS  Google Scholar 

  136. Gutiu, I. A. et al. Pharmacometabonomics, pharmacogenomics and personalized medicine. Rom. J. Intern. Med. 48, 187–191 (2010).

    CAS  PubMed  Google Scholar 

  137. Kwon, H. N. et al. Predicting idiopathic toxicity of cisplatin by a pharmacometabonomic approach. Kidney Int. 79, 529–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Nicholson, J. K., Wilson, I. D. & Lindon, J. C. Pharmacometabonomics as an effector for personalized medicine. Pharmacogenomics 12, 103–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Backshall, A., Sharma, R., Clarke, S. J. & Keun, H. C. Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin. Cancer Res. 17, 3019–3028 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Everett, J. R., Loo, R. L. & Pullen, F. S. Pharmacometabonomics and personalized medicine. Ann. Clin. Biochem. 50, 523–545 (2013).

    Article  PubMed  Google Scholar 

  141. K. C. et al. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew. Chem. Int. Ed. Engl. 48, 8240–8242 (2009).

    Article  CAS  Google Scholar 

  142. Balog, J. et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 5, 194ra93 (2013).

    Article  PubMed  CAS  Google Scholar 

  143. Strittmatter, N. et al. Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry. Chem. commun. 49, 6188–6190 (2013).

    Article  CAS  Google Scholar 

  144. Balog, J. et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal. Chem. 82, 7343–7350 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Plichta, J. K. et al. Does practice make perfect? Resident experience with breast surgery influences excision adequacy. Am. J. Surg. 209, 547–551 (2015).

    Article  PubMed  Google Scholar 

  146. Guenther, S. et al. Spatially resolved metabolic phenotyping of breast cancer by desorption electrospray ionization mass spectrometry. Cancer Res. 75, 1828–1837 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Nicholson, J. K. & Lindon, J. C. Systems biology: Metabonomics. Nature 455, 1054–1056 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Lindon, J. C. et al. Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol. 23, 833–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. MRC-NIHR National Phenome Centre [online]

  150. Dona, A. C. et al. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal. Chem. 86, 9887–9894 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Sarafian, M. H. et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 86, 5766–5774 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Human Metabolome Database [online]

  153. Mirnezami, R. et al. Rapid diagnosis and staging of colorectal cancer via high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy of intact tissue biopsies. Ann. Surg. 259, 1138–1149 (2014).

    Article  PubMed  Google Scholar 

  154. Cajka, T. & Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt. Chem. 61, 192–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kurland, I. J. et al. Application of combined omics platforms to accelerate biomedical discovery in diabesity. Ann. N. Y. Acad. Sci. 1287, 1–16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nicholson, J. K., Holmes, E., Lindon, J. C. & Wilson, I. D. The challenges of modeling mammalian biocomplexity. Nat. Biotechnol. 22, 1268–1274 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Biological Magnetic Resonance Data Bank [online]

Download references

Acknowledgements

The MRC-NIHR National Phenome Centre is supported by the UK Medical Research Council (in association with National Institute for Health Research [England]) Grant MC_PC_12025. The financial support of Bruker Biospin, Waters Corporation, Metabometrix and Imperial College is also gratefully acknowledged by the MRC-NIHR National Phenome Centre.

Author information

Authors and Affiliations

Authors

Contributions

E.H., A.W., S.D.T.-R. and J.K.N. researched data for and wrote the article. E.H., A.W. and J.K.N. reviewed/edited the manuscript before submission and E.H. and J.K.N. made substantial contributions to discussion of content.

Corresponding author

Correspondence to Jeremy K. Nicholson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Analytical techniques for metabolic phenotyping and examples of clinical applications (PDF 123 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, E., Wijeyesekera, A., Taylor-Robinson, S. et al. The promise of metabolic phenotyping in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol 12, 458–471 (2015). https://doi.org/10.1038/nrgastro.2015.114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.114

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research