Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Survival of the flexible: hormonal growth control and adaptation in plant development

Key Points

  • Indeterminate growth is a unique feature of plant development that is subject to intrinsic controls and modulated by environmental cues.

  • Growth control is mediated by hormonal responses that rapidly alter gene expression programmes by inducing or preventing degradation of transcriptional regulators by the ubiquitin–proteasome system.

  • Developmental targets of hormones are the meristems (stem cells and their transit amplifying daughter cells), lateral organ founder cells and the developing organ primordia.

  • Plant development is modulated by the well-known classic hormones, such as auxin, cytokinin and gibberellin, and by newly identified growth regulators, such as peptides, strigolactone and fatty acid-related molecules. Numerous growth regulators are yet to be discovered.

  • Hormones do not act in isolation but are interrelated by synergistic or antagonistic crosstalk so that the hormones modulate each other's biosynthesis or response.

  • Hormones stimulate or terminate cell proliferation and thus regulate meristem or organ size, depending on the spatial distribution of their receptors and transcriptional regulators, as well as the relative concentrations of antagonistically acting hormones such as auxin and cytokinin.

  • Environmental cues, such as light or stress, elicit stimulatory or inhibitory growth changes by altering local hormone biosynthesis or response.

  • Despite tremendous recent progress, important aspects of hormone action in development are yet to be analysed, including hormone-regulated cell fate and tissue-specific hormone responses.

Abstract

Plant development is subject to hormonal growth control and adapts to environmental cues such as light or stress. Recently, significant progress has been made in elucidating hormone synthesis, signalling and degradation pathways, and in resolving spatial and temporal aspects of hormone responses. Here we review how hormones control maintenance of stem cell systems, influence developmental transitions of stem cell daughters and define developmental compartments in Arabidopsis thaliana. We also discuss how environmental cues change plant growth by modulating hormone levels and response. Future analysis of hormone crosstalk and of hormone action at both single cell and organ levels will substantially improve our understanding of how plant development adapts to changes in intrinsic and environmental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Embryo and meristem organization.
Figure 2: Models for hormone crosstalk in different developmental contexts.
Figure 3: Model for hormonal input into cell cycle regulation.
Figure 4: Environmental influence on growth.

Similar content being viewed by others

References

  1. Benková, E. & Hejátko, J. Hormone interactions at the root apical meristem. Plant Mol. Biol. 69, 383–396 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Dugardeyn, J., Vandenbussche, F. & Van Der Straeten, D. To grow or not to grow: what can we learn on ethylene–gibberellin cross-talk by in silico gene expression analysis? J. Exp. Bot. 59, 1–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Hirose, N. et al. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59, 75–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Bishopp, A. et al. Signs of change: hormone receptors that regulate plant development. Development 133, 1857–1869 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Dharmasiri, N. et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Dreher, K. & Callis, J. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 99, 787–822 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwechheimer, C., Serino, G. & Deng, X. W. Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function. Plant Cell 14, 2553–2563 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Higuchi, M. et al. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101, 8821–8826 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishimura, C. et al. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16, 1365–1377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng, Y., Dai, X. & Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20, 1790–1799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng, Y., Dai, X. & Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19, 2430–2439 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brady, S. M. et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Dinneny, J. R. et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Savaldi-Goldstein, S., Peto, C. & Chory, J. The epidermis both drives and restricts plant shoot growth. Nature 446, 199–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Dello Ioio, R. et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 17, 678–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Ubeda-Tomás, S. et al. Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nature Cell Biol. 10, 625–628 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. Galinha, C. et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449, 1053–1057 (2007). This is the first paper to describe a protein gradient in plants. PLT protein levels were linked to concentration-dependent PLT responses in different root developmental zones.

    Article  CAS  PubMed  Google Scholar 

  20. Swarup, R. et al. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biol. 7, 1057–1065 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Jenik, P. D., Gillmor, C. S. & Lukowitz, W. Embryonic patterning in Arabidopsis thaliana. Annu. Rev. Cell Dev. Biol. 23, 207–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Friml, J. et al. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426, 147–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Weijers, D. et al. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev. Cell 10, 265–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Müller, B. & Sheen, J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453, 1094–1097 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Riefler, M., Novak, O., Strnad, M. & Schmülling, T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18, 40–54 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Long, J. A., Ohno, C., Smith, Z. R. & Meyerowitz, E. M. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312, 1520–1523 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Szemenyei, H., Hannon, M. & Long, J. A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319, 1384–1386 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Treml, B. S. et al. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 132, 4063–4074 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Breuninger, H., Rikirsch, E., Hermann, M., Ueda, M. & Laux, T. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev. Cell 14, 867–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Furutani, M. et al. PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131, 5021–5030 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Mayer, K. F. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Long, J. A., Moan, E. I., Medford, J. I. & Barton, M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. De Smet, I. et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134, 681–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Dello Ioio, R. et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322, 1380–1384 (2008). This paper identifies the CK and auxin signalling components that are required to set up the root meristem boundary and resolves the basis for auxin–CK antagonism in the root.

    Article  CAS  PubMed  Google Scholar 

  36. Fu, X. & Harberd, N. P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743 (2003). The DELLA repressors are identified as fundamental regulators of auxin-mediated root growth responses.

    Article  CAS  PubMed  Google Scholar 

  37. Lenhard, M., Jürgens, G. & Laux, T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129, 3195–3206 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Scheres, B. Stem-cell niches: nursery rhymes across kingdoms. Nature Rev. Mol. Cell Biol. 8, 345–354 (2007).

    Article  CAS  Google Scholar 

  40. Jasinski, S. et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15, 1560–1565 (2005). KNOX genes are identified as central regulators of CK and GA hormone homeostasis by oppositely affecting CK and GA levels in the shoot meristem.

    Article  CAS  PubMed  Google Scholar 

  41. Yanai, O. et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 15, 1566–1571 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Hay, A. et al. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr. Biol. 12, 1557–1565 (2002). The authors describe how KNOX-mediated meristematic maintenance in the shoot meristem and in leaves is antagonized by gibberellin.

    Article  CAS  PubMed  Google Scholar 

  43. Hamant, O. et al. The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol. 130, 657–665 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leibfried, A. et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kyozuka, J. Control of shoot and root meristem function by cytokinin. Curr. Opin. Plant Biol. 10, 442–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Nordström, A. et al. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proc. Natl. Acad. Sci. USA 101, 8039–8044 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Bainbridge, K. et al. Auxin influx carriers stabilize phyllotactic patterning. Genes Dev. 22, 810–823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shani, E., Yanai, O. & Ori, N. The role of hormones in shoot apical meristem function. Curr. Opin. Plant Biol. 9, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Weiss, D. & Ori, N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144, 1240–1246 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fiers, M., Ku, K. L. & Liu, C. M. CLE peptide ligands and their roles in establishing meristems. Curr. Opin. Plant Biol. 10, 39–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Kepinski, S. Integrating hormone signaling and patterning mechanisms in plant development. Curr. Opin. Plant Biol. 9, 28–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Grieneisen, V. A., Xu, J., Marée, A. F., Hogeweg, P. & Scheres, B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449, 1008–1013 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Stepanova, A. N., Hoyt, J. M., Hamilton, A. A. & Alonso, J. M. A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17, 2230–2242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008). The TAA1/TAR family of auxin synthesis genes are shown to be as crucial for embryonic and postembryonic development, and the authors reveal direct regulation of auxin synthesis as a central element of ethylene-modulated growth.

    Article  CAS  PubMed  Google Scholar 

  58. Miyawaki, K., Matsumoto-Kitano, M. & Kakimoto, T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37, 128–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Fukuda, H. Signals that control plant vascular cell differentiation. Nature Rev. Mol. Cell Biol. 5, 379–391 (2004).

    Article  CAS  Google Scholar 

  60. Carabelli, M. et al. Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev. 21, 1863–1868 (2007). This paper links differential regulation of organ growth to auxin-mediated CK breakdown and implicates auxin synthesis as a primary tool for light-induced growth promotion (by a low ratio of red to far-red light), as well as growth restriction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Werner, T., Köllmer, I., Bartrina, I., Holst, K. & Schmülling, T. New insights into the biology of cytokinin degradation. Plant Biol. 8, 371–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Frigerio, M. et al. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 142, 553–563 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nemhauser, J. L., Hong, F. & Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Silverstone, A. L. et al. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J. 12, 9–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Mitchum, M. G. et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. 45, 804–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Brenner, W. G., Romanov, G. A., Köllmer, I., Bürkle, L. & Schmülling, T. Immediate–early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 44, 314–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Shimada, A. et al. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J. 48, 390–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Greenboim-Wainberg, Y. et al. Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17, 92–102 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Swain, S. M. et al. Altered expression of SPINDLY affects gibberellin response and plant development. Plant Phys. 126, 1174–1185 (2001).

    Article  CAS  Google Scholar 

  70. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Kondo, T. et al. A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313, 845–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. De Veylder, L., Beeckman, T. & Inze, D. The ins and outs of the plant cell cycle. Nature Rev. Mol. Cell Biol. 8, 655–665 (2007).

    Article  CAS  Google Scholar 

  73. del Pozo, J. C., Boniotti, M. B. & Gutierrez, C. Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light. Plant Cell 14, 3057–3071 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Riou-Khamlichi, C., Menges, M., Healy, J. M. & Murray, J. A. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol. Cell. Biol. 20, 4513–4521 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tao, Y. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133, 164–176 (2008). This paper shows that the auxin biosynthesis gene TAA1 is regulated by a low ratio of red to far-red light to rapidly increase the level of auxin required for the shade avoidance response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scarpella, E., Marcos, D., Friml, J. & Berleth, T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20, 1015–1027 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anastasiou, E. et al. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev. Cell 13, 843–856 (2007). A novel, as yet unidentified, KLUH-derived signal is implicated in orchestrating aerial organ growth.

    Article  CAS  PubMed  Google Scholar 

  78. Mizukami, Y. & Fischer, R. L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. USA 97, 2942–2947 (2000).

    Article  Google Scholar 

  79. Nole-Wilson, S., Tranby, T. L. & Krizek, B. A. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol. Biol. 57, 613–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Mizukami, Y. A matter of size: developmental control of organ size in plants. Curr. Opin. Plant Biol. 4, 533–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Hu, Y., Xie, Q. & Chua, N. H. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15, 1951–1961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Werner, T. et al. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2532–2550 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rashotte, A. M. et al. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc. Natl. Acad. Sci. USA 103, 11081–11085 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Disch, S. et al. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr. Biol. 16, 272–279 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Fleet, C. M. & Sun, T. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Teale, W. D., Paponov, I. A. & Palme, K. Auxin in action: signalling, transport and the control of plant growth and development. Nature Rev. Mol. Cell Biol. 7, 847–859 (2006).

    Article  CAS  Google Scholar 

  87. Hu, Y., Poh, H. M. & Chua, N. H. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J. 47, 1–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Nakaya, M., Tsukaya, H., Murakami, N. & Kato, M. Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol. 43, 239–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Ogas, J. et al. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277, 91–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Henderson, J. T. et al. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Phys. 134, 995–1005 (2004).

    Article  CAS  Google Scholar 

  91. Hirakawa, Y. et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc. Natl. Acad. Sci. USA 105, 15208–15213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Whitford, R. et al. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc. Natl. Acad. Sci. USA 105, 18625–18630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vidaurre, D. P., Ploense, S., Krogan, N. T. & Berleth, T. AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis. Development 134, 2561–2567 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Rolland-Lagan, A., Bangham, J. A. & Coen, E. Growth dynamics underlying petal shape and asymmetry. Nature 422, 161–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Reinhardt, B. et al. Restoration of DWF4 expression to the leaf margin of a dwf4 mutant is sufficient to restore leaf shape but not size: the role of the margin in leaf development. Plant J. 52, 1094–1104 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Achard, P. et al. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94 (2006). This paper describes the central role of the DELLA repressors in the regulation of overall plant growth in response to stresses.

    Article  CAS  PubMed  Google Scholar 

  99. Spoel, S. H. & Dong, X. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3, 348–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Bhalerao, R. P. et al.Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J. 29, 325–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Park, J. E. et al. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 282, 10036–10046 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, D., Pajerowska-Mukhtar, K., Culler, A. H. & Dong, X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17, 1784–1790 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Huang, D., Wu, W., Abrams, S. R. & Cutler, A. J. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J. Exp. Bot. 59, 2991–3007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Achard, P., Vriezen, W. H., Van Der Straeten, D. & Harberd, N. P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15, 2816–2825 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pérez-Torres, CA. et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20, 3258–3272 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Stuttmann, J. et al. COP9 signalosome- and 26S Proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis. J. Biol. Chem. 284, 7920–7930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Malamy, J. E. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28, 67–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Walch-Liu, P. et al. Nitrogen regulation of root branching. Ann. Bot. (Lond.) 97, 875–881 (2006).

    Article  CAS  Google Scholar 

  110. Jiao, Y., Lau, O. S. & Deng, X. W. Light-regulated transcriptional networks in higher plants. Nature Rev. Genet. 8, 217–230 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Oh, E. et al. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19, 1192–1208 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Feng, S. et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475–479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Devlin, P. F., Yanovsky, M. J. & Kay, S. A. A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol. 133, 1617–1629 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kanyuka, K. et al. Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant J. 35, 57–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Nambara, E. & Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56, 165–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Broekaert, W. F., Delauré, S. L., De Bolle, M. F. & Cammue, B. P. The role of ethylene in host–pathogen interactions. Annu. Rev. Phytopathol. 44, 393–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S. & Ecker, J. R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284, 2148–2152 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. León, P. & Sheen, J. Sugar and hormone connections. Trends Plant Sci. 8, 110–116 (2003).

    Article  PubMed  CAS  Google Scholar 

  120. Cheng, WH. et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723–2743 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Srivastava, R., Liu, J. X. & Howell, S. H. Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J. 56, 219–227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stenvik, G. E. et al. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20, 1805–1817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).

    Article  PubMed  Google Scholar 

  124. Blakeslee, J. J. et al. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19, 131–147 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Woodward, A. W. & Bartel, B. Auxin: regulation, action, and interaction. Ann. Bot. 95, 707–735 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kurakawa, T. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Schwechheimer, C. Understanding gibberellic acid signaling — are we there yet? Curr. Opin. Plant Biol. 11, 9–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Murase, K., Hirano, Y., Sun, T. P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Geldner, N., Hyman, D. L., Wang, X., Schumacher, K. & Chory, J. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev. 21, 1598–1602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Symons, G. M., Ross, J. J., Jager, C. E. & Reid, J. B. Brassinosteroid transport. J. Exp. Bot. 59, 17–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Ohnishi, T. et al. Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochem. 67, 1895–1906 (2006).

    Article  CAS  Google Scholar 

  133. Wasternack, C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100, 681–697 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lorenzo, O., Chico, J. M., Sánchez-Serrano, J. J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938–1950 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. McCourt, P. & Creelman, R. The ABA receptors — we report you decide. Curr. Opin. Plant Biol. 11, 474–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Jiang, F. & Hartung, W. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J. Exp. Bot. 59, 37–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Kendrick, M. D. & Chang, C. Ethylene signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol. 11, 479–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hartig, K. & Beck, E. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol. 8, 389–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Magyar, Z. et al. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell 17, 2527–2541 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dewitte, W. & Murray, J. A. The plant cell cycle. Annu. Rev. Plant Biol. 54, 235–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Vanneste, S. et al. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17, 3035–3050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Achard, P. et al. DELLAs contribute to plant photomorphogenesis. Plant Physiol. 143, 1163–1172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sullivan, J. A., Shirasu, K. & Deng, X. W. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nature Rev. Genet. 4, 948–958 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. To, J. P. & Kieber, J. J. Cytokinin signaling: two-components and more. Trends Plant Sci. 13, 85–92 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Kägi for help with the figures and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Jürgens.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Jürgens laboratory homepage

Glossary

F-box receptor

The component of an SCF E3 ubiquitin ligase that acts as a hormone receptor and that recognizes repressor proteins as substrates to be targeted for degradation.

Meristem

A plant stem cell system comprising the niche, the pluripotent stem cells and their highly proliferating daughter cells.

Determinate organ

Plant organ that does not have unlimited growth potential but that differentiates once the final size is reached, for example, a leaf.

Quiescent centre

A group of cells located in the centre of the root meristem and required to keep the surrounding stem cells from differentiating.

Histone acetyltransferase

An enzyme that adds acetyl groups to lysine residues in the DNA-binding histone group of proteins and thereby modulates the transcriptional activity of genes.

Chromatin remodelling

Transient changes in chromatin accessibility.

Cotyledon

The leaves of a seedling that are formed during embryonic development.

Indeterminate

Refers to a pattern of growth and development that is open ended. In meristems, this is associated with the continuous ability to produce determinate lateral organs, such as leaves. By contrast, determinate refers to growth and development that is restricted in time or space.

Organizing centre

A group of cells that is located in the centre of the shoot meristem and is required to prevent the surrounding stem cells from differentiating.

Transit amplifying cells

Stem cell daughters that divide for a definite number of times before they leave the meristem to undergo terminal differentiation.

Transition zone

Boundary between the meristematic zone (which is proliferative) and the differentiation zones; it is easily recognized by the onset of cell elongation in the root.

DELLA proteins

DELLA domain-containing gibberellin signalling repressors, which are named after a conserved stretch of amino acids that are required for their degradation by the 26S proteasome.

CLE family

Family of CLV3-related peptide ligands that bind to receptor kinases that contain leucine-rich repeats, such as CLV1.

Hormonal regime

Describes a situation in which the hormone concentration or the concentration ratio of different hormones mediates cell- or compartment-specific responses.

Callus

A disorganized group of proliferating or undifferentiated cells.

Lateral organ

An organ that is produced from the shoot apical meristem. Includes leaves and putatively homologous organs such as cotyledons (embryonic leaves), bracts (modified leaves that subtend reproductive structures) and floral organs.

Signalosome

A multifunctional protein complex essential for development and possibly involved in the regulation of protein degradation.

Proteasome

A large intracellular protein complex that degrades soluble proteins that have been modified by ubiquitylation.

Photomorphogenesis

A light-dependent developmental process, such as seed germination or seedling growth.

Phytochrome

One of three classes of known plant photoreceptors. Phytochromes are composed of a protein moiety covalently associated with a tetrapyrrole chromophore; they are synthesized in a red-light-absorbing form and are converted by red light to a far-red-light-absorbing isoforms, which bind to nuclear-localized transcription factors of the PIF class.

Hypocotyl

The stem of a seedling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolters, H., Jürgens, G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10, 305–317 (2009). https://doi.org/10.1038/nrg2558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2558

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing