Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species

Key Points

  • Post-zygotic genetic incompatibility can ensue when hybridization brings together gene products that no longer function properly together in the same genome, thus reducing gene flow among incompatible genotypes.

  • In plants, numerous forms of postzygotic genetic incompatibilities exist, including hybrid sterility, cytoplasmic male sterility and hybrid necrosis or weakness.

  • Hybrid necrosis is a common type of incompatibility found in F1 progeny of many crosses within species and between species, which suggests it could be a model for understanding factors that are important at various stages in the processes of genetic differentiation, and perhaps speciation.

  • Classical and newly described cases of hybrid necrosis generally involve two-locus interactions that are similar to Dobzhansky–Muller interactions. The observation that hybrid necrosis is characterized by a recurring suite of characteristics that are similar to phenotypes associated with oxidative stress, such as yellowing, wilting, cell death and tissue necrosis, in multiple taxa, indicates a common underlying mechanism might be responsible.

  • Hybrid necrosis has been described many times during the past 80 years; one common theme that has emerged is a strong association between hybrid necrosis and selection for disease resistance, which suggest that causal alleles might evolve repeatedly in response to common external pressures, such as host–pathogen conflict.

  • In one case of mild autonecrosis, the causal genes have been identified; one is a disease-resistance (R) gene, implicating this diverse and rapidly evolving class of genes in plant hybrid incompatibility, and suggesting that hybrid necrosis is akin to an autoimmune response.

  • Other types of hybrid failure that are due to F1 weakness in plants might be caused by factors as varied as stresses in the physical environment, hormonal aberrations and genome-integrated viruses.

  • Identifying the evolutionary pressures that contribute to divergence or genetic incompatibility remains an important goal with implications for speciation, and hybrid necrosis, given its prevalence in the plant kingdom, could provide a particularly good model for understanding such processes.

Abstract

Ecological factors, hybrid sterility and differences in ploidy levels are well known for contributing to gene-flow barriers in plants. Another common postzygotic incompatibility, hybrid necrosis, has received comparatively little attention in the evolutionary genetics literature. Hybrid necrosis is associated with a suite of phenotypic characteristics that are similar to those elicited in response to various environmental stresses, including pathogen attack. The genetic architecture is generally simple, and complies with the Bateson–Dobzhansky–Muller model for hybrid incompatibility between species. We survey the extensive literature on this topic and present the hypothesis that hybrid necrosis can result from autoimmunity, perhaps as a pleiotropic effect of evolution of genes that are involved in pathogen response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic differentiation in populations.
Figure 2: Wheat hybrid necrosis and the rise of Ne2.

Similar content being viewed by others

References

  1. Coyne, J. A. & Orr, H. A. Speciation (Sinauer, Sunderland, 2004). A comprehensive and accessible synopsis of research into gene-flow barriers.

    Google Scholar 

  2. Wu, C. I. & Ting, C. T. Genes and speciation. Nature Rev. Genet. 5, 114–122 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Orr, H. A. & Presgraves, D. C. Speciation by postzygotic isolation: forces, genes and molecules. BioEssays 22, 1085–1094 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Mallet, J. What does Drosophila genetics tell us about speciation? Trends Ecol. Evol. 21, 386–393 (2006).

    Article  PubMed  Google Scholar 

  5. Orr, H. A., Masly, J. P. & Presgraves, D. C. Speciation genes. Curr. Opin. Genet. Dev. 14, 675–679 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Chase, C. D. Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet. 23, 81–90 (2007). An interesting review covering many aspects of CMS, including a description of the genes that have been cloned and characterized.

    Article  CAS  PubMed  Google Scholar 

  7. Heck, J. A. et al. Negative epistasis between natural variants of the Saccharomyces cerevisiae MLH1 and PMS1 genes results in a defect in mismatch repair. Proc. Natl Acad. Sci. USA 103, 3256–3261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harrison, J. S. & Burton, R. S. Tracing hybrid incompatibilities to single amino acid substitutions. Mol. Biol. Evol. 23, 559–564 (2006). An interesting study demonstrating co-evolution of individual amino acids that contribute to nuclear–mitochondrial incompatibility in interpopulation hybrids.

    Article  CAS  PubMed  Google Scholar 

  9. Wittbrodt, J. et al. Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature 341, 415–421 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Fedorova, N. D., Badger, J. H., Robson, G. D., Wortman, J. R. & Nierman, W. C. Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 6, 177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saupe, S. J. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 64, 489–502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glass, N. L. & Kaneko, I. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryotic Cell 2, 1–8 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levin, D. A. The Origin, Expansion, and Demise of Plant Species (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  14. Moyle, L. C., Olson, M. S. & Tiffin, P. Patterns of reproductive isolation in three angiosperm genera. Evolution 58, 1195–1208 (2004).

    Article  PubMed  Google Scholar 

  15. Stebbins, G. L. Variation and Evolution in Plants (Columbia Univ. Press, New York, 1950).

    Book  Google Scholar 

  16. Grant, V. G. Plant Speciation (Columbia Univ. Press, New York, 1971).

    Google Scholar 

  17. Henry, I. M. et al. Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170, 1979–1988 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rieseberg, L. H. & Carney, S. E. Plant hybridization. New Phytol. 140, 599–624 (1998).

    Article  PubMed  Google Scholar 

  19. Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T. & Smith, W. A. Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7, 465–474 (1998).

    Article  Google Scholar 

  20. Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).

    Article  PubMed  Google Scholar 

  21. Rieseberg, L. H., Church, S. A. & Morjan, C. A. Integration of populations and differentiation of species. New Phytol. 161, 59–69 (2003). This review makes important points about the relationships between gene flow, species integrity and species unity.

    Article  CAS  Google Scholar 

  22. Noor, M. A. & Feder, J. L. Speciation genetics: evolving approaches. Nature Rev. Genet. 7, 851–861 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Oka, H.-I. Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics 77, 521–534 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Melchers, G. Genetik und Evolution. Zeitschr. Ind. Abst. u. Vererbungsl. 76, 229–259 (1939) (in German). Includes an early demonstration of the simple genetic basis of seed lethality in a wild species.

    Google Scholar 

  25. Zhu, S. et al. A new gene located on chromosome 2 causing hybrid sterility in a remote cross of rice. Plant Breed. 124, 440–445 (2005).

    Article  CAS  Google Scholar 

  26. Sweigart, A. L., Fishman, L. & Willis, J. H. A simple genetic incompatibility causes hybrid male sterility in Mimulus. Genetics 172, 2465–2479 (2006). A genome-wide study of factors that contribute to interspecies sterility in a wild species, demonstrating a relatively simple genetic basis and BDM-like gene interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, H. B. et al. Genetic basis of low-temperature sterility in indica-japonica hybrids of rice as determined by RFLP analysis. Theor. Appl. Genet. 95, 1092–1097 (1997).

    Article  CAS  Google Scholar 

  28. Lai, Z. et al. Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 171, 291–303 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harushima, Y., Nakagahra, M., Yano, M., Sasaki, T. & Kurata, N. Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160, 313–322 (2002).

    PubMed  PubMed Central  Google Scholar 

  30. Croullebois, M. L., Barreneche, M. T., de Cherisey, H. & Pernes, J. Intraspecific differentiation of Setaria italica (L.) P. B.:study of abnormalities (weakness, segregation distortion and partial sterility) observed in F1 and F2 generations. Genome 32, 203–207 (1989).

    Article  Google Scholar 

  31. Schnable, P. S. & Wise, R. P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3, 175–180 (1998).

    Article  Google Scholar 

  32. Rieseberg, L. H., Whitton, J. & Gardner, K. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152, 713–727 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Burke, J. M. & Arnold, M. L. Genetics and the fitness of hybrids. Annu. Rev. Genet. 35, 31–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).

    Article  PubMed  Google Scholar 

  35. Ahuja, M. R. Genetic control of tumor formation in higher plants. Q. Rev. Biol. 40, 329–340 (1965).

    Article  Google Scholar 

  36. Joshi, M. G. Occurrence of genetic tumours in Triticum interspecies hybrids. Theor. Appl. Genet. 42, 227–228 (1972).

    Article  CAS  PubMed  Google Scholar 

  37. Phillips, L. L. & Reid, R. K. Interspecific incompatibility in Gossypium. II. Light and electron microscopic studies of cell necrosis and tumorigenesis in hybrids of G. klotzschianum. Am. J. Bot. 62, 790–796 (1975).

    Article  Google Scholar 

  38. Schaeffer, G. W. Tumour induction by an indolyl-3-acetic acid–kinetin interaction in a Nicotiana hybrid. Nature 196, 1326–1327 (1962).

    Article  CAS  PubMed  Google Scholar 

  39. McNaughton, I. H. & Harper, J. L. The comparative biology of closely related species living in the same area. II. Aberrant morphology and a virus-like syndrome in hybrids between Papaver rhoeas L. and P. dubium L. New Phytol. 59, 27–41 (1960). This paper reports the finding of hybrids that show necrosis symptoms in the wild, where the parental species occur in sympatry.

    Article  Google Scholar 

  40. Chu, Y.-E. & Oka, H.-I. The genetic basis of crossing barriers between Oryza perennis subsp. barthii and its related taxa. Evolution 24, 135–144 (1970).

    Article  PubMed  Google Scholar 

  41. Koinange, E. M. K. & Gepts, P. Hybrid weakness in wild Phaseolus vulgaris L. J. Hered. 83, 135–139 (1992).

    Article  Google Scholar 

  42. Sano, Y. & Kita, F. Reproductive barriers distributed in Melilotus species and their genetic basis. Canad. J. Genet. Cytol. 20, 275–289 (1978).

    Article  Google Scholar 

  43. Brieger, F. Vererbung bei Artbastarden unter besonderer berücksichtigung der Gattung Nicotiana. Der Züchter 1, 140–152 (1929) (in German). An early (if not the first) description of BDM-like incompatibility between species.

    Article  Google Scholar 

  44. Hollingshead, L. A lethal factor in Crepis effective only in an interspecific hybrid. Genetics 15, 114–140 (1930). A commonly cited early case of BDM-like genetically simple incompatibility; also an early description of between-species hybrid necrosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith, W. K. Viability of interspecific hybrids in Melilotus. Genetics 39, 269–277 (1954).

    Google Scholar 

  46. Sawant, A. C. Semilethal complementary factors in a tomato species hybrid. Evolution 10, 93–96 (1956).

    Article  Google Scholar 

  47. Langford, A. N. Autogenous necrosis in tomatoes immune from Cladosporium cooke. Can. J. Res. 26, 35–64 (1948).

    Article  CAS  PubMed  Google Scholar 

  48. Chu, Y. & Oka, H. The distribution and effects of genes causing F1 weakness in Oryza breviligulata and O. glaberrima. Genetics 70, 163–173 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Inai, S., Ishikawa, K., Numonura, O. & Ikehashi, H. Genetic analysis of stunted growth by nuclear–cytoplasmic interaction in interspecific hybrids of Capsicum by using RAPD markers. Theor. Appl. Genet. 87, 416–422 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Burkholder, W. H. & Muller, A. S. Hereditary abnormalities resembling certain virus diseases in beans. Phytopathology 16, 731–737 (1926). One of the first (if not the first) descriptions of a two-locus interaction that causes genetic incompatibility within species (reminiscent of BDM-like interactions).

    Google Scholar 

  51. Hutchinson, J. B. The genetics of cotton. Part VII. 'Crumpled': a new dominant in Asiatic cottons produced by complementary factors. J. Genet. 25, 281–291 (1932).

    Article  Google Scholar 

  52. Wiebe, G. A. Complementary factors in barley giving a lethal progeny. J. Hered. 25, 272–274 (1934). Perhaps the earliest description of a dominant within-species F 1 lethality that is attributable to a two-locus epistatic interaction (reminiscent of between-species BDM-interactions).

    Article  Google Scholar 

  53. Hermsen, J. G. T. Hybrid dwarfness in wheat. Euphytica 16, 134–162 (1967).

    Article  Google Scholar 

  54. Stelly, D. M. Localization of the Le2 locus of cotton (Gossypium hirsutum L.). J. Hered. 81, 193–197 (1990).

    Article  Google Scholar 

  55. Samora, P. J., Stelly, D. M. & Kohel, R. J. Localization and mapping of the Le1 and Gl2 loci of cotton (Gossypium hirsutum L.). J. Hered. 85, 152–157 (1994).

    Article  CAS  Google Scholar 

  56. Phillips, L. L. The cytogenetics of Gossypium and the origin of New World cottons. Evolution 17, 460–469 (1963).

    Article  Google Scholar 

  57. Stephens, S. G. The genetics of 'corky'. II. Further studies on its genetic basis in relation to the general problem of interspecific isolating mechanisms. J. Genet. 50, 9–20 (1950).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, J. A. Genetics of D 3 complementary lethality in Gossypium hirsutum and G. barbadense. J. Hered. 72, 299–300 (1981).

    Article  Google Scholar 

  59. Phillips, L. L. Interspecific incompatibility in Gossypium. III. The genetics of tumorigenesis in hybrids of G. gossypioides. Can. J. Genet. Cytol. 18, 365–369 (1976).

    Article  Google Scholar 

  60. Heuer, S. & Miézan, K. M. Assessing hybrid sterility in Oryza glaberrima × O. sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties. Theor. Appl. Genet. 107, 902–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Pickersgill, B. Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution 25, 683–691 (1971).

    PubMed  Google Scholar 

  62. Frank, S. A. & Barr, C. M. Programmed cell death and hybrid incompatibility. J. Hered. 94, 181–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Kostoff, D. Ontogeny, Genetics, and Cytology of Nicotiana Hybrids. Genetica 12, 33–139 (1930). Possibly the first suggestion in the literature that immunity contributes to interspecies barriers.

    Article  Google Scholar 

  64. Whitaker, T. W. & Bemis, W. P. Virus-like syndromes of Cucurbita species hybrids. J. Hered. 19, 229–236 (1964).

    Article  Google Scholar 

  65. Coyne, D. P. A genetic study of the 'crippled' morphology resembling virus symptoms in Phaseolus vulgaris L. J. Hered. 56, 162–176 (1965).

    Article  Google Scholar 

  66. Dangl, J. L., Dietrich, R. A. & Richberg, M. H. Death don't have no mercy: cell death programs in plant–microbe interactions. Plant Cell 8, 1793–1807 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khanna-Chopra, R., Dalal, M., Kumar, G. P. & Laloraya, M. A genetic system involving superoxide causes F1 necrosis in wheat (T. aestivum L.). Biochem. Biophys. Res. Comm. 248, 712–715 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Marubashi, W., Yamada, T. & Niwa, M. Apoptosis detected in hybrids between Nicotiana glutinosa and N. repanda expressing lethality. Planta 210, 168–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Ahl, P. & Gianinazzi, S. b-protein as a constitutive component in highly (TMV) resistant interspecific hybrids of Nicotiana glutinosa × Nicotiana debneyi. Plant Sci. Lett. 26, 173–181 (1982).

    Article  CAS  Google Scholar 

  70. Cole, A. B. et al. Temporal expression of PR-1 and enhanced mature plant resistance to virus infection is controlled by a single dominant gene in a new Nicotiana hybrid. Mol. Plant Microbe Interact. 17, 976–985 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Mino, M., Maekawa, K., Ogawa, K., Yamagishi, H. & Inoue, M. Cell death processes during expression of hybrid lethality in interspecific F1 hybrid between Nicotiana gossei Domin and Nicotiana tabacum. Plant Physiol. 130, 1776–1787 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lheureux, F., Carreel, F., Jenny, C., Lockhart, B. E. L. & Iskra-Caruna, M. L. Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor. Appl. Genet. 106, 594–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Lockhart, B. E., Menke, J., Dahal, G. & Olszewski, N. E. Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. J. Gen. Virol. 81, 1579–1585 (2000). A demonstration that integrated viruses can cause disease in tobacco species hybrids.

    Article  CAS  PubMed  Google Scholar 

  74. Ndowara, T. et al. Evidence that Badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255, 214–220 (1999). A demonstration that integrated viruses can cause disease in banana after activation caused by stresses, including hybridization.

    Article  Google Scholar 

  75. Geering, A. D. W. et al. Banana contains a diverse array of endogenous badnaviruses. J. Gen. Virol. 86, 511–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Richert-Pöggeler, K. R., Noreen, F., Schwarzacher, T., Harper, G. & Hohn, T. Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO J. 22, 4836–4845 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Harper, G., Hull, R., Lockhart, B. & Olszewski, N. E. Viral sequences integrated into plant genomes. Annu. Rev. Phytopathol. 40, 119–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Mette, M. F. et al. Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J. 21, 461–469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Engels, W. R. & Preston, C. R. Hybrid dysgenesis in Drosophila melanogaster: the biology of female and male sterility. Genetics 92, 161–174 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kidwell, M. G., Kidwell, J. F. & Sved, J. A. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813–833 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bingham, P. M., Kidwell, M. G. & Rubin, G. The molecular basis of P–M-hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29, 995–1004 (1982).

    Article  CAS  PubMed  Google Scholar 

  82. Eggleston, W. B., Johnson Schlitz, D. M. & Engels, W. R. P–M-hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331, 368–370 (1988).

    Article  CAS  PubMed  Google Scholar 

  83. Petrov, D. A., Schutzman, J. L., Hartl, D. L. & Lozovskaya, E. R. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl Acad. Sci. USA 92, 8050–8054 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blumenstiel, J. P. & Hartl, D. L. Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc. Natl Acad. Sci. USA 102, 15965–15970 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Waterhouse, P. M., Wang, M. B. & Lough, T. Gene silencing as an adaptive defence against viruses. Nature 411, 834–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Christie, P. & Macnair, M. R. Complementary lethal factors in two north american populations of the yellow monkey flower. J. Hered. 75, 510–511 (1984).

    Article  Google Scholar 

  87. Christie, P. & Macnair, M. R. The distribution of postmating reproductive isolating genes in populations of the yellow monkey flower, Mimulus guttatus. Evolution 41, 571–578 (1987).

    Article  PubMed  Google Scholar 

  88. Macnair, M. R. & Christie, P. Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus. Heredity 50, 295–302 (1983).

    Article  CAS  Google Scholar 

  89. Gepts, P. & Bliss, F. A. F1 hybrid weakness in the common bean. J. Hered. 76, 447–450 (1985).

    Article  Google Scholar 

  90. Singh, S. P. & Gutiérrez, J. A. Geographical distribution of the DL 1 and DL 2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33, 337–345 (1984).

    Article  Google Scholar 

  91. Shii, C. T., Mok, M. C. & Mok, D. W. Developmental controls of morphological mutants of Phaseolus vulgaris L.:differential expression of mutant loci in plant organs. Dev. Genet. 2, 279–290 (1981).

    Article  CAS  Google Scholar 

  92. Reiber, J. M. & Neuman, D. S. Hybrid weakness in Phaseolus vulgaris L. II. Disruption of root-shoot integration. J. Plant Growth Regul. 18, 107–112 (1999). Presents an interesting series of grafting experiments that implicate root–shoot integration and the hormone cytokinin in hybrid lethality in bean.

    Article  CAS  PubMed  Google Scholar 

  93. Hannah, M. A., Iqbal, M. J. & Sanders, F. E. The DL gene system in common bean: a possible mechanism for control of root-shoot partitioning. New Phytol. 147, 487–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Smith, W. K. Propagation of chlorophyll-deficient sweetclover hybrids as grafts. J. Hered. 34, 135–140 (1943).

    Article  Google Scholar 

  95. Ladizinsky, G. Dwarfing genes in the genus Lens Mill. Theor. Appl. Genet. 95, 1270–1273 (1997).

    Article  CAS  Google Scholar 

  96. Yamada, T. & Marubashi, W. Overproduced ethylene causes programmed cell death leading to temperature-sensitive lethality in hybrid seedlings from the cross Nicotiana suaveolens × N. tabacum. Planta 217, 690–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Yamada, T., Marubashi, W. & Niwa, M. Facile induction of apoptosis into plant cells associated with temperature-sensitive lethality shown on interspecific hybrid from the cross Nicotiana suaveolens × N. tabacum. Plant Cell Physiol. 42, 204–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Stephens, S. G. The genetics of 'corky'. I. The New World alleles and their possible role as an interspecific isolating mechanism. J. Genet. 47, 150–161 (1946).

    Article  CAS  PubMed  Google Scholar 

  99. Knight, R. L. The genetics of blackarm disease. V. Dwarf-bunched and its relationship to B 1 . J. Genet. 48, 43–50 (1947).

    Article  CAS  PubMed  Google Scholar 

  100. Morrison, J. W. Dwarfs, semi-lethals and lethals in wheat. Euphytica 6, 213–223 (1957).

    Article  Google Scholar 

  101. Pukhalskiy, V. A., Martynov, S. P. & Dobrotvorskaya, T. V. Analysis of geographical and breeding-related distribution of hybrid necrosis genes in bread wheat (Triticum aestivum L.). Euphytica 114, 233–240 (2000). Traces historical changes in the frequency of wheat hybrid-necrosis genes Ne 1 and Ne 2 in a large number of accessions.

    Article  CAS  Google Scholar 

  102. Ichitani, K., Fukuta, Y., Taura, S. & Sato, M. Chromosomal location of Hwc2, one of the complementary hybrid weakness genes, in rice. Plant Breed. 120, 523–525 (2001).

    Article  CAS  Google Scholar 

  103. McHale, L., Tan, X., Koehl, P. & Michelmore, R. W. Plant NBS–LRR proteins: adaptable guards. Genome Biol. 7, 212 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Atwood, S. S. & Kreitlow, K. W. Studies of a genetic disease of Trifolium repens simulating a virosis. Am. J. Bot. 33, 91–100 (1946).

    Article  CAS  PubMed  Google Scholar 

  105. Valkonen, J. P. T. & Watanabe, K. N. Autonomous cell death, temperature sensitivity and the genetic control associated with resistance to cucumber mosaic virus (CMV) in diploid potatoes (Solanum spp.). Theor. Appl. Genet. 99, 996–1005 (1999).

    Article  Google Scholar 

  106. Joshi, A. K., Chand, R., Kumar, S. & Singh, R. P. Leaf tip necrosis: a phenotypic marker associated with resistance to spot blotch disease in wheat. Crop Sci. 44, 792–796 (2004).

    Article  Google Scholar 

  107. Mishra, A. N., Kaushal, K., Yadav, S. R., Shirsekar, G. S. & Pandey, H. N. A leaf rust resistance gene, different from Lr34, associated with leaf tip necrosis in wheat. Plant Breed. 124, 517–519 (2005).

    Article  CAS  Google Scholar 

  108. Krüger, J. et al. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744–747 (2002). The best published evidence that R genes are involved in autonecrosis, a mild hybrid syndrome with characteristics that are similar to hybrid necrosis.

    Article  PubMed  Google Scholar 

  109. Wulff, B. B. et al. Gene shuffling-generated and natural variants of the tomato resistance gene Cf-9 exhibit different auto-necrosis-inducing activities in Nicotiana species. Plant J. 40, 942–956 (2004). Explicitly states for the first time that R genes might be directly involved in incompatibility in plants.

    Article  CAS  PubMed  Google Scholar 

  110. Singh, R. P. & McIntosh, R. A. Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum. II. Cytogenetic Studies. Canad. J. Genet. Cytol. 26, 736–742 (1984).

    Article  Google Scholar 

  111. Ahmadi, N. et al. Genetic basis and mapping of the resistance to rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor. Appl. Genet. 103, 1084–1092 (2001).

    Article  CAS  Google Scholar 

  112. Baker, E. P. Isolation of complementary genes conditioning crown rust resistance in the oat variety Bond. Euphytica 15, 313–318 (1966).

    Article  Google Scholar 

  113. Buell, C. R. & Somerville, S. C. Use of Arabidopsis recombinant inbred lines reveals a monogenic and a novel digenic resistance mechanism to Xanthomonas campestris pv campestris. Plant J. 12, 21–29 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Lefebvre, V. & Palloix, A. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper–Phytophthora capsici Leonian. Theor. Appl. Genet. 93, 503–511 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Noël, L. et al. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11, 2099–2112 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mondragón-Palomino, M., Meyers, B. C., Michelmore, R. W. & Gaut, B. S. Patterns of positive selection in the complete NBS–LRR gene family of Arabidopsis thaliana. Genome Res. 12, 1305–1315 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bakker, E. G., Toomajian, C., Kreitman, M. & Bergelson, J. A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18, 1803–1818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006). A recent comprehensive review on plant disease resistance.

    Article  CAS  PubMed  Google Scholar 

  119. Orr, H. A. Dobzhansky, Bateson, and the genetics of speciation. Genetics 144, 1331–1335 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R. & Dangl, J. L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Mackey, D., Holt, B. F. I., Wiig, A. & Dangl, J. L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for for RPM1-mediated disease resistance in Arabidopsis. Cell 108, 743–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Axtell, M. & Staskawicz, B. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Kaneko, I., Dementhon, K., Xiang, Q. & Glass, N. L. Nonallelic interactions between het-c-and a polymorphic locus, pin-c, are essential for nonself recognition and programmed cell death in Neurospora crassa. Genetics 172, 1545–1555 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sears, E. R. Inviability of intergeneric hybrids involving Triticum monococcum and T. aegilopoides. Genetics 29, 113–127 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Roy, R. P. Semi-lethal hybrids in crosses of species and synthetic amphidiploids of Triticum and Aegilops. Indian J. Genet. Plant Breed. 14, 88–98 (1955).

    Google Scholar 

  126. Silow, R. A. The comparative genetics of Gossypium anomalum and the cultivated Asiatic cottons. J. Genet. 42, 259–358 (1941).

    Article  Google Scholar 

  127. Gerstel, D. U. A new lethal combination in interspecific cotton hybrids. Genetics 39, 628–639 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Phillips, L. L. Interspecific incompatibility in Gossypium. IV. Temperature-conditional lethality in hybrids of G. klotzschianum. Am. J. Bot. 64, 914–915 (1977).

    Article  Google Scholar 

  129. Schuster, M. Genetics of powdery mildew resistance in Malus species. Acta Hort. 538, 593–595 (2000).

    Article  Google Scholar 

  130. Ren, Z. L. & Lelley, T. Genetics of hybrid necrosis in rye. Plant Breed. 100, 173–180 (1988).

    Article  Google Scholar 

  131. Lawrence, W. J. C. Studies on Streptocarpus II. Complementary sub-lethal genes. J. Genet. 48, 16–30 (1947).

    Article  CAS  PubMed  Google Scholar 

  132. Heyne, E. G., Wiebe, G. A. & Painter, R. H. Complementary genes in wheat causing death of F1 plants. J. Hered. 34, 243–245 (1943).

    Article  Google Scholar 

  133. Hermsen, J. G. T. The genetic basis of hybrid necrosis in wheat. Genetica 33, 245–287 (1963).

    Article  Google Scholar 

  134. Filler, D. M., Luby, J. L. & Ascher, P. D. Incongruity in the interspecific crosses of Vitis L. Morphological abnormalities in the F2 progeny. Euphytica 78, 227–237 (1994).

    Article  Google Scholar 

  135. Galloway, L. F. & Etterson, J. R. Population differentiation and hybrid success in Campanula americana: geography and genome size. J. Evol. Biol. 18, 81–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Pélabon, C., Carlson, M. L., Hansen, T. F., Yoccoz, N. G. & Armbruster, W. S. Consequences of inter-population crosses on developmental stability and canalization of floral traits in Dalechampia scandens (Euphorbiaceae). J. Evol. Biol. 17, 19–32 (2004).

    Article  PubMed  Google Scholar 

  137. Bohm, B. A., Ganders, F. R. & Plowman, T. Biosystematics and evolution of cultivated coca (Erythroxylaceae). Syst. Bot. 7, 121–133 (1982).

    Article  Google Scholar 

  138. Konishi, T. Geographical distribution of the two dominant complementary genes for hybrid weakness in barley. Barley Genet. Newsl. 15, 39–41 (1985).

    Google Scholar 

  139. Wilson, V. E. & Hudson, L. W. Inheritance of deleterious factors causing chlorophyll deficiency and seed sterility in lentils. J. Hered. 69, 267–269 (1978).

    Article  Google Scholar 

  140. Ahuja, I. An hypothesis and evidence concerning the genetic components controlling tumor formation in Nicotiana. Mol. Gen. Genet. 103, 176–184 (1968).

    Article  CAS  PubMed  Google Scholar 

  141. Ikeda, K., Sobrizal, P., Sanchez, L., Yasui, H. & Yoshimura, A. Hybrid weakness restoration gene (Rhw) for Oryza glumaepatula cytoplasm. Rice Genet. Newsl. 16, 62–63 (1999).

    Google Scholar 

  142. Oka, H.-I. Phylogenetic differentiation of cultivated rice. XV. Complementary lethal genes in rice. Japan. J. Genet. 32, 83–87 (1957).

    Article  Google Scholar 

  143. Sato, Y. I. & Morishima, H. Studies on the distribution of complementary genes causing F1 weakness in common rice and its wild relatives. 2. Distribution of two complementary genes, Hwc-1 and Hwc-2 gene in native cultivars and its wild relatives of tropical Asia. Euphytica 36, 425–431 (1987).

    Article  Google Scholar 

  144. Kubo, T. & Yoshimura, A. Epistasis underlying female sterility detected in hybrid breakdown in a Japonica–Indica cross of rice (Oryza sativa L.). Theor. Appl. Genet. 110, 346–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Tomar, S. M. S. & Singh, B. Hybrid chlorosis in wheat × rye crosses. Euphytica 99, 1–4 (1998).

    Article  Google Scholar 

  146. Tikhenko, N. D., Tsvetkova, N. V. & Voylokov, A. V. Genetic control of embryo lethality in crosses between common wheat and rye. Russian J. Genet. 41, 877–884 (2005).

    Article  CAS  Google Scholar 

  147. Canvin, D. T. & McVetty, P. B. E. Hybrid grass-clump dwarfness in wheat: physiology and genetics. Euphytica 25, 471–483 (1976).

    Article  Google Scholar 

  148. Hermsen, J. G. T. Hybrid necrosis and red hybrid chlorosisin wheat. Proceedings of the 2nd International Wheat Genetics Symposium. Hereditas S2, 439–452 (1963).

    Google Scholar 

  149. Saunders, A. R. Complementary lethal genes in the cowpea. S. Afr. J. Sci. 48, 195–197 (1952).

    Google Scholar 

Download references

Acknowledgements

We thank L. Yant and three anonymous reviewers for helpful comments on the manuscript, and B. Dilkes, S. Hedrick and several members of our department for thoughtful discussions. The authors are funded by a Ruth Kirschstein NRSA postdoctoral fellowship to K.B., a Gottfried–Wilhelm–Leibniz Award of the German Research Foundation (DFG) to D.W., and the Max Planck Society. D.W. is a Director of the Max Planck Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kirsten Bomblies or Detlef Weigel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

CHARGE Project web site

GrainGenes

Weigel laboratory homepage

Glossary

Prezygotic barriers

Gene-flow barriers or incompatibilities that act to prevent successful fertilization.

Postzygotic barriers

Gene-flow barriers or incompatibilities that act after successful fertilization and formation of a zygote, in either the first or subsequent hybrid generations.

Homeologous

Refers to loci (or entire chromosomes) that are duplicated as a result of a genome duplication event (polyploidy).

Amphidiploid

A species or strain with a doubled genome complement, with the components (subgenomes) originating from different parents.

Subgenome

One of two (or more) full genome complements found in an amphidiploid, recognizable as separate from other genome complements.

Hypersensitive response

A cell-death response that is elicited during pathogen response activation in plants to limit the ability of pathogens to spread through living tissue.

Episome

A DNA element that is capable of replication within a host cell independently of the nuclear genome; for example, replicated viral genome copies that are generated after an integrated copy in the host genome is activated.

Skin strength

The degree to which organs are able to acquire nutrients and other resources from other parts of the plant.

Reinforcement

The strengthening of earlier-acting barriers (for example, prezygotic) as a result of selection against hybrids that are adversely affected at a later stage (for example, postzygotic).

Autonecrosis

The spontaneous appearance of lesions that are similar to those involved in pathogen response, in the absence of pathogen attack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomblies, K., Weigel, D. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8, 382–393 (2007). https://doi.org/10.1038/nrg2082

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing