Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leafing through the genomes of our major crop plants: strategies for capturing unique information

Key Points

  • Crop domestication ranks among the greatest of human achievements, and is closely correlated with human population growth and social evolution. Intensive directional selection that is applied during crop domestication and breeding has led to the rapid evolution of many extraordinary models for particular aspects of morphology and development.

  • The sequencing of the Arabidopsis thaliana genome and that of two Oryza subspecies foreshadowed new opportunities that could result from obtaining the complete genetic blueprints of our main crops.

  • Combining comprehensive sequence information with knowledge of the morphological and physiological diversity of angiosperms, and their well-understood phylogeny, will answer many questions about angiosperm genome evolution and function.

  • Because plant genome sizes vary over a range of at least 1,000-fold, the decision to sequence one is a complex equation that balances genome size with scientific, economic and social impact, phylogenetic distance from previously sequenced plants, the amount of relevant information that is available from previous studies and the persuasiveness of individual (or groups of) investigators.

  • Features of genome organization that differentiate plants from animals and/or microbes, such as autopolyploidy and an abundance of repetitive DNA, further complicate the sequencing equation.

  • With transcriptome coverage in many angiosperms above the 50% of genes beyond which the EST approach loses efficiency in revealing new genes, two new representational approaches — methyl filtration and Cot-based cloning and sequencing — show promise to further advance transcriptome coverage. They will also access information about introns and regulatory sequences from genomes for which complete sequencing is not yet justifiable.

  • In terms of the full sequencing of crop genomes, comparison of whole-genome shotgun and clone-based rice sequencing efforts highlights the controversy over the merits of these respective strategies. Both approaches are incorporated to varying degrees into the sequencing of at least eight other crop genomes that are in progress or have been scheduled for public sequencing efforts.

  • Many benefits of crop genome sequencing might be quickly realized by the use of 'phylogenetic shadowing' approaches. A 2× coverage of the high-complexity regions of 16 angiosperm genomes might provide the resolution that is required to detect conserved elements of as small as 8 nucleotides in most lineages, at a level of sequencing which is within the current annual capacity of some individual sequencing centres.

Abstract

Crop plants not only have economic significance, but also comprise important botanical models for evolution and development. This is reflected by the recent increase in the percentage of publicly available sequence data that are derived from angiosperms. Further genome sequencing of the major crop plants will offer new learning opportunities, but their large, repetitive, and often polyploid genomes present challenges. Reduced-representation approaches — such as EST sequencing, methyl filtration and Cot-based cloning and sequencing — provide increased efficiency in extracting key information from crop genomes without full-genome sequencing. Combining these methods with phylogenetically stratified sampling to allow comparative genomic approaches has the potential to further accelerate progress in angiosperm genomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term trends in angiosperm DNA-sequence generation.
Figure 2: Whole-genome shotgun versus clone-by-clone sequencing strategies.
Figure 3: A phylogenetic view of angiosperm sequencing projects.

Similar content being viewed by others

References

  1. Raven, P., Evert, R. & Eichhorn, S. Biology of Plants (Worth Publishers Inc., New York, 1992).

    Google Scholar 

  2. Paterson, A. et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269, 1714–1718 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Lin, Y., Schertz, K. & Paterson, A. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141, 391–411 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu, F. Y. et al. Convergent evolution of perenniality in rice and sorghum. Proc. Natl Acad. Sci. USA 100, 4050–4054 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clement, C. R. 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53, 188–202 (1999).

    Article  Google Scholar 

  6. Kim, J. K. & Triplett, B. A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127, 1361–1366 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vavilov, N. The law of homologous series in variation. J. Genet. 12, 1 (1922).

    Article  Google Scholar 

  8. Tocchini-Valentini, G. D., Fruscoloni, P. & Tocchini-Valentini, G. P. Structure, function, and evolution of the tRNA endonucleases of Archaea: An example of subfunctionalization. Proc. Natl Acad. Sci. USA 102, 8933–8938 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, Z. K., Pinson, S. R. M., Park, W. D., Paterson, A. H. & Stansel, J. W. Epistasis for three grain yield components in rice (Oryza sativa L). Genetics 145, 453–465 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Z. K. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158, 1737–1753 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Younghusband, F. The Epic of Mount Everest (E. P. Publishing, London, 1926).

    Google Scholar 

  12. Mitton, J. B. & Grant, M. C. Genetic variation and the natural history of quaking aspen. Bioscience 46, 25–31 (1996).

    Article  Google Scholar 

  13. Lynch, A. J. J. & Balmer, J. The Ecology, phytosociology and stand structure of an ancient endemic plant, Lomatia tasmanica (Proteaceae), approaching extinction. Aust. J. Bot. 52, 619–627 (2004).

    Article  Google Scholar 

  14. Blanc, G. & Wolfe, K. H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667–1678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lagercrantz, U. & Lydiate, D. J. Comparative genome mapping in Brassica. Genetics 144, 1903–1910 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stankiewicz, P. & Lupski, J. R. Genome architecture, rearrangements and genomic disorders. Trends Genet. 18, 74–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Rong, J. et al. Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res. 15, 1198–1210 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bowers, J. E. et al. Comparative physical mapping links retention of microsynteny to chromosome structure and recombination in grasses. Proc. Natl Acad. Sci. USA 102, 13206–13211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown, A. H. D. Enzyme polymorphism in plant-populations. Theor. Popul. Biol. 15, 1–42 (1979).

    Article  Google Scholar 

  20. Dehal, P. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Bennett, M. & Smith, J. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. B 334, 309–345 (1991).

    Article  CAS  Google Scholar 

  22. Peterson, D. G., Wessler, S. R. & Paterson, A. H. Efficient capture of unique sequences from eukaryotic genomes. Trends Genet. 18, 547–550 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y. & Bennetzen, J. L. The paleontology of intergene retrotransposons of maize. Nature Genet. 20, 43–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Ming, R. et al. Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150, 1663–1682 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfeiffer, T., Schrader, L. E. & Bingham, E. T. Physiological comparisons of isogenic diploid–tetraploid, tetraploid–octoploid alfalfa populations. Crop Sci. 20, 299–303 (1980).

    Article  CAS  Google Scholar 

  26. Ming, R., Liu, S. C., Moore, P. H., Irvine, J. E. & Paterson, A. H. QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res. 11, 2075–2084 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bowers, J. E., Chapman, B. A., Rong, J. K. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003). A synthesis of divergent approaches to the study of genome organization that clarified the evolutionary history of angiosperm chromosomes.

    Article  CAS  PubMed  Google Scholar 

  28. Haas B. J. et al. Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol. 3, research0029.1–research0029.12 (2002).

    Article  Google Scholar 

  29. Kikuchi, S. et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301, 376–379 (2003).

    Article  PubMed  Google Scholar 

  30. Soares, M. B. et al. Construction and characterization of a normalized cDNA library. Proc. Natl Acad. Sci. USA 91, 9228–9232 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rabinowicz, P. D. et al. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genet. 23, 305–308 (1999). An elegant primary demonstration of the merits of the methylation filtration approach.

    Article  CAS  PubMed  Google Scholar 

  32. Rabinowicz, P. D., McCombie, W. R. & Martienssen, R. A. Gene enrichment in plant genomic shotgun libraries. Curr. Opin. Plant Biol. 6, 150–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Peterson, D. G. et al. Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res. 12, 795–807 (2002). An elegant primary demonstration of the merits of the Cot-based cloning and sequencing approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Britten, R. J. & Kohne, D. E. Repeated Sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161, 529–540 (1968).

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg, R. B. From Cot curves to genomics. How gene cloning established new concepts in plant biology. Plant Physiol. 125, 4–8 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whitelaw, C. A. et al. Enrichment of gene-coding sequences in maize by genome filtration. Science 302, 2118–2120 (2003).

    Article  PubMed  Google Scholar 

  37. Kovalchuk, O. et al. Genome hypermethylation in Pinus silvestris of Chernobyl — a mechanism for radiation adaptation? Mutat. Res. 529, 13–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Meng, L., Bregitzer, P., Zhang, S. B. & Lemaux, P. G. Methylation of the exon/intron region in the Ubi1 promoter complex correlates with transgene silencing in barley. Plant Mol. Biol. 53, 327–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Baurens, F. C., Nicolleau, J., Legavre, T., Verdeil, J. L. & Monteuuis, O. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol. 24, 401–407 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Yuan, Y. N., SanMiguel, P. J. & Bennetzen, J. L. High-Cot sequence analysis of the maize genome. Plant J. 34, 249–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Springer, N. M. & Barbazuk, W. B. Utility of different gene enrichment approaches toward identifying and sequencing the maize gene space. Plant Physiol. 136, 3023–3033 (2004). A particularly balanced comparison of methylation filtration and Cot-based cloning and sequencing in maize.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lamoureux, D., Peterson, D. G., Li, W., Fellers, J. P. & Gill, B. S. The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48, 1120–1126 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Fu, Y., Hsia, A. P., Guo, L. & Schnable, P. S. Types and frequencies of sequencing errors in methyl-filtered and high C(0)t maize genome survey sequences. Plant Physiol. 135, 2040–2045 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wicker, T. et al. The repetitive landscape of the chicken genome. Genome Res. 15, 126–136 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nelson, D. L. et al. Alu polymerase chain-reaction — a method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl Acad. Sci. USA 86, 6686–6690 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Batzer, M. A. & Deininger, P. L. Alu repeats and human genomic diversity. Nature Rev. Genet. 3, 370–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Green, E. D. Strategies for the systematic sequencing of complex genomes. Nature Rev. Genet. 2, 573–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Collins, F. S., Lander, E. S., Rogers, J. & Waterston, R. H. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  CAS  Google Scholar 

  49. Marra, M. et al. High-throughput fingerprint analysis of large-insert clones. Genome Res. 7, 1072–1084 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Soderlund, C., Humphrey, S., Dunham, A. & French, L. Contigs built with fingerprints, markers and FPC V4.7. Genome Res. 10, 1772–1787 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29, 577–605 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Copenhaver, G. P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Nagaki, K. et al. Sequencing of a rice centromere uncovers active genes. Nature Genetics 36, 138–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Y. et al. Structural features of the rice chromosome 4 centromere. Nucleic Acids Res. 32, 2023–2030 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang, N., Bao, Z. R., Zhang, X. Y., Eddy, S. R. & Wessler, S. R. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431, 569–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Juretic, N., Hoen, D. R., Huynh, M. L., Harrison, P. M. & Bureau, T. E. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res. 15, 1292–1297 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. D'Ennequin, M. L. T., Toupance, B., Robert, T., Godelle, B. & Gouyon, P. Plant domestication: a model for studying the selection of linkage. J. Evol. Biol. 12, 1138–1147 (1999).

    Article  Google Scholar 

  58. Paterson, A. H. What has QTL mapping taught us about plant domestication? New Phytologist 154, 591–608 (2002).

    Article  CAS  Google Scholar 

  59. Johnson, M. E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Initiative, T. A. G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  Google Scholar 

  61. Matsumoto, T. et al. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  CAS  Google Scholar 

  62. Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296, 92–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296, 79–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, 266–281 (2005).

    Article  CAS  Google Scholar 

  65. Gao, W. X. et al. Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.). Genetics 167, 1317–1329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kynast, R. G. et al. Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proc. Natl Acad. Sci. USA 101, 9921–9926 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aston, C., Mishra, B. & Schwartz, D. C. Optical mapping and its potential for large-scale sequencing projects. Trends Biotechnol. 17, 297–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Boffelli, D., Nobrega, M. A. & Rubin, E. M. Comparative genomics at the vertebrate extremes. Nature Rev. Genet. 5, 456–465 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Margulies, E. H. et al. An initial strategy for the systematic identification of functional elements in the human genome by low-redundancy comparative sequencing. Proc. Natl Acad. Sci. USA 102, 4795–4800 (2005). A detailed consideration of the phylogenetic shadowing approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).

    Article  CAS  PubMed  Google Scholar 

  71. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Eddy, S. R. A model of the statistical power of comparative genome sequence analysis. PLoS Biol. 3, 95–102 (2005). Describes the theoretical underpinnings of the phylogenetic shadowing approach.

    Article  CAS  Google Scholar 

  73. Soltis, D. E. et al. Missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci. 7, 22–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Pryer, K. M., Schneider, H., Zimmer, E. A. & Banks, J. A. Deciding among green plants for whole genome studies. Trends Plant Sci. 7, 550–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Sanderson, M. J., Thorne, J. L., Wikstrom, N. & Bremer, K. Molecular evidence on plant divergence times. Am. J. Bot. 91, 1656–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Bell, C. D., Soltis, D. E. & Soltis, P. S. The age of the angiosperms: a molecular timescale without a clock. Evolution 59, 1245–1258 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Lin, Y. et al. A Sorghum propinquum BAC library, suitable for cloning genes associated with loss-of-function mutations during crop domestication. Mol. Breed. 5, 511–520 (1999).

    Article  CAS  Google Scholar 

  79. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Reich, D. E. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nature Genet. 32, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Ahmadi, K. R. et al. A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nature Genet. 37, 84–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Wright, S. I. et al. The effects of artificial selection of the maize genome. Science 308, 1310–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, R. L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature 398, 236–239 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Thornsberry, J. M. et al. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genet. 28, 286–289 (2001). The seminal application of association genetics to the characterization of plant (maize) germplasm.

    Article  CAS  PubMed  Google Scholar 

  87. Gallavotti, A. et al. The role of barren stalk1 in the architecture of maize. Nature 432, 630–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, H. et al. The origin of the naked grains of maize. Nature 436, 714–719 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, A. H. D. Core collections — a practical approach to genetic-resources management. Genome 31, 818–824 (1989).

    Article  Google Scholar 

  90. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005). References 90 and 91 describe next-generation DNA-sequencing technologies that promise further acceleration of sequence acquisition.

    Article  CAS  PubMed  Google Scholar 

  92. Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G. & Chee, M. S. A genome-wide scalable SNP genotyping assay using microarray technology. Nature Genet. 37, 549–554 (2005). A particularly promising genotyping assay that seems to be scalable to transcriptome- or even genome-wide applications.

    Article  CAS  PubMed  Google Scholar 

  93. Koo, B., Pardey, P. & Wright, B. The price of conserving agricultural biodiversity. Nature Biotechnol. 21, 126–128 (2003).

    Article  CAS  Google Scholar 

  94. Britten, R. J. & Davidson, E. H. Studies on nucleic-acid reassociation kinetics — empirical equations describing DNA reassociation. Proc. Natl Acad. Sci. USA 73, 415–419 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pearson, W. R., Davidson, E. H. & Britten, R. J. Program for least-squares analysis of reassociation and hybridization data. Nucleic Acids Res. 4, 1727–1737 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cech, T. R., Rosenfel. A & Hearst, J. E. Characterization of most rapidly renaturing sequences in mouse main-band DNA. J. Mol. Biol. 81, 299–325 (1973).

    Article  CAS  PubMed  Google Scholar 

  97. Klein, H. L. & Welch, S. K. Inverted repeated sequences in yeast nuclear-DNA. Nucleic Acids Res. 8, 4651–4669 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Paterson, A., Bowers, J., Peterson, D., Estill, J. & Chapman, B. Structure and evolution of cereal genomes. Curr. Opin. Genet. Devel. 13, 644–650 (2003).

    Article  CAS  Google Scholar 

  99. Paterson, A. H., Bowers, J. E. & Chapman, B. A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl Acad. Sci. USA 101, 9903–9908 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guyot, R. & Keller, B. Ancestral genome duplication in rice. Genome 47, 610–614 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, X., Shi, X., Hao, B. L., Ge, S. & Luo, J. Duplication and DNA segmental loss in rice genome and their implications for diploidization. New Phytologist 165, 937–946 (2005).

    Article  CAS  Google Scholar 

  102. Paterson, A. H., Bowers, J. E., Vandepoele, K. & Van de Peer, Y. Ancient duplication of cereal genomes. New Phytologist 165, 658–661 (2005).

    Article  CAS  Google Scholar 

  103. Vandepoele, K., Simillion, C. & Van de Peer, Y. Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15, 2192–2202 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bedell, J. A. et al. Sorghum genome sequencing by methylation filtration. PLoS Biol. 3, 103–115 (2005).

    Article  Google Scholar 

  105. Bowers, J. E. et al. A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165, 367–386 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Messing, J. et al. Sequence composition and genome organization of maize. Proc. Natl Acad. Sci. USA 101, 14349–14354 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bremer, K. et al. An ordinal classification for the families of flowering plants. Ann. Mo. Bot. Gard. 85, 531–553 (1998).

    Article  Google Scholar 

  108. Soltis, D. E., Soltis, P. S., Endress, P. K. & Chase, M. W. Phylogeny and Evolution of Angiosperms (Sinauer Associates, Sunderland, Massachusetts, 2005).

    Google Scholar 

Download references

Acknowledgements

Thanks to J. Bowers, P. Brown, C. dePamphilis, J. Estill, J. Giovannoni, S. Kresovich, R. Mauricio, J. McNeal, C. Peterson, D. Peterson, J. Shaw, P. Soltis, H. Tang, S. Tanksley, N. Young and others for helpful data and discussions, and the US National Science Foundation, US Department of Agriculture, International Consortium for Sugarcane Biotechnology and US Golf Association for financial support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Consultative Group on International Agricultural Research

GenBank

Joint Genome Institute Community Sequencing Program — Sequencing Plans for 2006

Joint Genome Institute Populus trichocarpa sequencing project

Medicago truncatula sequencing resources

Multinational Brassica Genome Project

The International Tomato Sequencing Project

The Potato Genome Sequencing Consortium

The US Department of Agriculture Germplasm Resources Information Network

Glossary

Germplasm

The hereditary materials within a species.

Subfunctionalization

Division of ancestral functions of a gene between duplicated copies of the original gene.

Neofunctionalization

Evolution of new function(s) for a gene, which are thought to be made possible by duplication of the gene, with one copy retaining the ancestral function.

Epistasis

Nonlinear interactions between independent genes that affect their impact on a phenotype.

Ramet

An individual plant that is part of a clump of plants that are genetically identical to a single parent.

Genet

A set of individuals that are produced by asexual reproduction from a single zygote.

Sequence-tagged site

A genetic locus that is defined by unique sequence information.

Gene conversion

A meiotic process of directed change in which one allele directs the conversion of a partner allele to its own form, probably by repair of heteroduplex DNA.

Haplotype

The genetic constitution of an individual chromosome; this can refer to one locus or to an entire genome. A genome-wide haplotype would comprise half a diploid genome, including one allele from each allelic gene pair.

Minimum tiling path

A set of (usually large-insert) clones that collectively cover a genome, chromosome or target region, with a minimum of redundancy.

Radiation hybrid

A cell line that contains one or more chromosome segments from another species, which is generated by irradiation of cells from a target species, followed by fusion with normal cultured cells from a 'host' species. This allows the mapping of genes or other DNA sequences on the basis of similarities and differences in the ability of different cell lines to bind DNA probes from the target organism.

Chromosome-specific cell lines

Similar to radiation hybrids, these are generated by irradiation of cells from a target species, followed by fusion with normal cultured cells from a 'host' species. However, unlike radiation hybrids, they contain only one chromosome from the target organism. This allows mapping of genes or other DNA sequences on the basis of the binding of DNA probes from the target organism.

Optical mapping

Use of light microscopy to directly image individual DNA molecules, which are bound to specially derivatized surfaces and then cleaved by restriction enzymes.

Foldback DNA

When denatured, this DNA reassociates at a high rate that cannot be explained by bimolecular association. This is probably due to the presence on the same strand of palindromic elements that can self-anneal.

Parsimony

In systematics, parsimony refers to choosing the simplest explanation of the observed data. For example, which phylogenetic tree requires the fewest possible mutations to explain the data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, A. Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nat Rev Genet 7, 174–184 (2006). https://doi.org/10.1038/nrg1806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing