Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets

Key Points

  • NADPH oxidases are a family of enzymes that generate reactive oxygen species (ROS). The ROS generated by NADPH oxidases have crucial roles in various physiological processes, including innate immunity and modulation of redox-dependent signalling cascades.

  • Excessive ROS production by an overactive NADPH oxidase system in cells of the artery wall may set in motion a vicious cycle of radical and non-radical oxidant generation in various cellular compartments, which disrupts redox circuits. This can lead to the initiation and progression of vascular disease that may ultimately lead to heart attacks and strokes.

  • Blocking excessive ROS production by blocking NADPH oxidases is likely to be a far superior approach for preventing the progression of vascular disease than using antioxidant drugs, which scavenge ROS.

  • This Review first provides an overview of the mechanisms by which ROS can cause vascular disease and the possible reasons why previous attempts to eliminate these species with antioxidants failed. We summarize the evidence that NADPH oxidases are key generators of ROS — in the blood vessel wall and other tissues — during cardiovascular diseases, with a particular focus on the NADPH oxidase 1 (NOX1) and NOX2 oxidase isoforms.

  • We also describe some common and emerging putative NADPH oxidase inhibitors.

  • In addition, we highlight the crucial role of the NADPH oxidase regulatory subunit, p47phox, in the activity of vascular NOX1 and NOX2 oxidases, and suggest how a better understanding of its specific molecular interactions may enable the development of novel isoform-selective drugs to prevent or treat cardiovascular diseases.

Abstract

NADPH oxidases are a family of enzymes that generate reactive oxygen species (ROS). The NOX1 (NADPH oxidase 1) and NOX2 oxidases are the major sources of ROS in the artery wall in conditions such as hypertension, hypercholesterolaemia, diabetes and ageing, and so they are important contributors to the oxidative stress, endothelial dysfunction and vascular inflammation that underlies arterial remodelling and atherogenesis. In this Review, we advance the concept that compared to the use of conventional antioxidants, inhibiting NOX1 and NOX2 oxidases is a superior approach for combating oxidative stress. We briefly describe some common and emerging putative NADPH oxidase inhibitors. In addition, we highlight the crucial role of the NADPH oxidase regulatory subunit, p47phox, in the activity of vascular NOX1 and NOX2 oxidases, and suggest how a better understanding of its specific molecular interactions may enable the development of novel isoform-selective drugs to prevent or treat cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subunit composition of the seven mammalian NADPH oxidase isoforms.
Figure 2: Cellular and subcellular expression of NADPH oxidase isoforms in the blood vessel wall.
Figure 3: Schematic diagram showing p47phox as the central organizer of the vascular NOX1 and NOX2 oxidases.
Figure 4: The p47phox tandem-repeat SH3 domain as a potential drug target.

Similar content being viewed by others

References

  1. Dinauer, M. C. Disorders of neutrophil function: an overview. Methods Mol. Biol. 412, 489–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Jones, D. P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295, C849–C868 (2008).

  3. Santos, C. X., Tanaka, L. Y., Wosniak, J. & Laurindo, F. R. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid. Redox Signal. 11, 2409–2427 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Morris, C. D. & Carson, S. Routine vitamin supplementation to prevent cardiovascular disease: a summary of the evidence for the U. S. Preventive Services Task Force. Ann. Intern. Med. 139, 56–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Hulsmans, M. & Holvoet, P. The vicious circle between oxidative stress and inflammation in atherosclerosis. J. Cell. Mol. Med. 14, 70–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Madamanchi, N. R., Hakim, Z. S. & Runge, M. S. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J. Thromb. Haemost. 3, 254–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Thomas, S. R., Witting, P. K. & Drummond, G. R. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 10, 1713–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Chrissobolis, S. & Faraci, F. M. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol. Med. 14, 495–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stocker, R. & Keaney, J. F. Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381–1478 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Forstermann, U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 459, 923–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Blough, N. V. & Zafiriou, O. C. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg. Chem. 24, 3502–3504 (1985).

    Article  CAS  Google Scholar 

  12. Gryglewski, R. J., Palmer, R. M. & Moncada, S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320, 454–456 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Szabo, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Rev. Drug Discov. 6, 662–680 (2007).

    Article  CAS  Google Scholar 

  14. Harrison, D. G., Chen, W., Dikalov, S. & Li, L. Regulation of endothelial cell tetrahydrobiopterin pathophysiological and therapeutic implications. Adv. Pharmacol. 60, 107–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Laursen, J. B. et al. Endothelial regulation of vasomotion in ApoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103, 1282–1288 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Wadham, C. & Mangoni, A. A. Dimethylarginine dimethylaminohydrolase regulation: a novel therapeutic target in cardiovascular disease. Expert Opin. Drug Metab. Toxicol. 5, 303–319 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Stasch, J. P. et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Invest. 116, 2552–2561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anrather, J., Racchumi, G. & Iadecola, C. NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J. Biol. Chem. 281, 5657–5667 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Dworakowski, R., Alom-Ruiz, S. P. & Shah, A. M. NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacol. Rep. 60, 21–28 (2008).

    CAS  PubMed  Google Scholar 

  20. Lassegue, B. & Griendling, K. K. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler. Thromb. Vasc. Biol. 30, 653–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Brown, D. I. & Griendling, K. K. Nox proteins in signal transduction. Free Radic. Biol. Med. 47, 1239–1253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinon, F. Signaling by ROS drives inflammasome activation. Eur. J. Immunol. 40, 616–619 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Lonn, E. M. & Yusuf, S. Is there a role for antioxidant vitamins in the prevention of cardiovascular diseases? An update on epidemiological and clinical trials data. Can. J. Cardiol. 13, 957–965 (1997).

    CAS  PubMed  Google Scholar 

  24. Bleys, J., Miller, E. R., Pastor-Barriuso, R., Appel, L. J. & Guallar, E. Vitamin-mineral supplementation and the progression of atherosclerosis: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 84, 880–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Vivekananthan, D. P., Penn, M. S., Sapp, S. K., Hsu, A. & Topol, E. J. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361, 2017–2023 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Schiffrin, E. L. Antioxidants in hypertension and cardiovascular disease. Mol. Interv. 10, 354–362 (2010).

    Article  PubMed  Google Scholar 

  27. Kissner, R., Nauser, T., Bugnon, P., Lye, P. G. & Koppenol, W. H. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol. 10, 1285–1292 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Gotoh, N. & Niki, E. Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim. Biophys. Acta 1115, 201–207 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Simonsen, U., Wadsworth, R. M., Buus, N. H. & Mulvany, M. J. In vitro simultaneous measurements of relaxation and nitric oxide concentration in rat superior mesenteric artery. J. Physiol. 516, 271–282 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Witting, P. K., Willhite, C. A., Davies, M. J. & Stocker, R. Lipid oxidation in human low-density lipoprotein induced by metmyoglobin/H2O2: involvement of α-tocopheroxyl and phosphatidylcholine alkoxyl radicals. Chem. Res. Toxicol. 12, 1173–1181 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Witting, P. K., Upston, J. M. & Stocker, R. Role of α-tocopheroxyl radical in the initiation of lipid peroxidation in human low-density lipoprotein exposed to horse radish peroxidase. Biochemistry 36, 1251–1258 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Stocker, R. Lipoprotein oxidation: mechanistic aspects, methodological approaches and clinical relevance. Curr. Opin. Lipidol. 5, 422–433 (1995).

    Article  Google Scholar 

  33. Mohazzab, K. M., Kaminski, P. M. & Wolin, M. S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am. J. Physiol. 266, H2568–2572 (1994). This was the first paper to demonstrate that endothelial cells express a functional NAD(P)H oxidase system.

    CAS  PubMed  Google Scholar 

  34. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D. & Alexander, R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74, 1141–1148 (1994). This was the first paper to demonstrate that VSMCs express a functional NAD(P)H oxidase system.

    Article  CAS  PubMed  Google Scholar 

  35. Leto, T. L., Morand, S., Hurt, D. & Ueyama, T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal. 11, 2607–2619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller, F. J. Jr et al. Cytokine activation of nuclear factor κB in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ. Res. 101, 663–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Serrander, L. et al. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem. J. 406, 105–114 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dikalov, S. I. et al. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic. Biol. Med. 45, 1340–1351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takac, I. et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304–13313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Csanyi, G., Taylor, W. R. & Pagano, P. J. NOX and inflammation in the vascular adventitia. Free Radic. Biol. Med. 47, 1254–1266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. BelAiba, R. S. et al. NOX5 variants are functionally active in endothelial cells. Free Radic. Biol. Med. 42, 446–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Lassegue, B. et al. Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88, 888–894 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ellmark, S. H., Dusting, G. J., Fui, M. N., Guzzo-Pernell, N. & Drummond, G. R. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc. Res. 65, 495–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Moe, K. T. et al. Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-α in human aortic smooth muscle and embryonic kidney cells. J. Cell. Mol. Med. 10, 231–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Chamseddine, A. H. & Miller, F. J. Jr. Gp91phox contributes to NADPH oxidase activity in aortic fibroblasts but not smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 285, H2284–H2289 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Pagano, P. J. et al. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc. Natl Acad. Sci. USA 94, 14483–14488 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haurani, M. J. & Pagano, P. J. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc. Res. 75, 679–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Touyz, R. M. et al. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ. Res. 90, 1205–1213 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Selemidis, S., Sobey, C. G., Wingler, K., Schmidt, H. H. & Drummond, G. R. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol. Ther. 120, 254–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Brandes, R. P. & Schroder, K. Composition and functions of vascular nicotinamide adenine dinucleotide phosphate oxidases. Trends Cardiovasc. Med. 18, 15–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Miller, A. A., Drummond, G. R. & Sobey, C. G. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol. Ther. 111, 928–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Jackman, K. A. et al. Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br. J. Pharmacol. 156, 680–688 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, H., Song, Y. S. & Chan, P. H. Inhibition of NADPH oxidase is neuroprotective after ischemia–reperfusion. J. Cereb. Blood Flow Metab. 29, 1262–1272 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Kahles, T. et al. NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38, 3000–3006 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Jung, O. et al. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 109, 1795–1801 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Rey, F. E., Cifuentes, M. E., Kiarash, A., Quinn, M. T. & Pagano, P. J. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2 and systolic blood pressure in mice. Circ. Res. 89, 408–414 (2001). This was the first demonstration that a rational drug design approach can yield effective inhibitors of NADPH oxidase that prevent vascular oxidative stress and reduce systolic blood pressure in an in vivo animal model of hypertension.

    Article  CAS  PubMed  Google Scholar 

  58. Brennan, A. M. et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nature Neurosci. 12, 857–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Park, L. et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc. Natl Acad. Sci. USA 105, 1347–1352 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Miller, A. A., De Silva, T. M., Jackman, K. A. & Sobey, C. G. Effect of gender and sex hormones on vascular oxidative stress. Clin. Exp. Pharmacol. Physiol. 34, 1037–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Ambasta, R. K. et al. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J. Biol. Chem. 279, 45935–45941 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ambasta, R. K., Schreiber, J. G., Janiszewski, M., Busse, R. & Brandes, R. P. Noxa1 is a central component of the smooth muscle NADPH oxidase in mice. Free Radic. Biol. Med. 41, 193–201 (2006). This study provides evidence that the NOX1 oxidase expressed in VSMCs may be unique from that expressed in other tissues in its utility of the classical organizer subunit p47phox.

    Article  CAS  PubMed  Google Scholar 

  63. Niu, X. L. et al. Nox activator 1: a potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries. Circulation 121, 549–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Akasaki, T. et al. Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system. Hypertens. Res. 29, 813–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Oelze, M. et al. NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BK β 1−/− mice. Arterioscler. Thromb. Vasc. Biol. 26, 1753–1759 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, P. et al. Contribution of different Nox homologues to cardiac remodeling in two-kidney two-clip renovascular hypertensive rats: effect of valsartan. Pharmacol. Res. 55, 408–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Nakano, D. et al. Dietary sesamin suppresses aortic NADPH oxidase in DOCA salt hypertensive rats. Clin. Exp. Pharmacol. Physiol. 35, 324–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura, T. et al. Beneficial effects of pioglitazone on hypertensive cardiovascular injury are enhanced by combination with candesartan. Hypertension 51, 296–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Dikalova, A. et al. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112, 2668–2676 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Dikalova, A. E. et al. Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am. J. Physiol. Heart Circ. Physiol. 299, H673–H679 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gavazzi, G. et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 580, 497–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Matsuno, K. et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112, 2677–2685 (2005). These two studies (references 71 and 72) emanating from different groups and published within 12 months of each other used novel strains of NOX1-deficient mice to provide the first definitive evidence that NOX1 oxidase is an important contributor to angiotensin II-dependent hypertension and its associated vascular pathologies.

    Article  CAS  PubMed  Google Scholar 

  73. Basset, O. et al. NADPH oxidase 1 deficiency alters caveolin phosphorylation and angiotensin II-receptor localization in vascular smooth muscle. Antioxid. Redox Signal. 11, 2371–2384 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Gavazzi, G. et al. NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 50, 189–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Chu, X. et al. A critical role for chloride channel-3 (CIC-3) in smooth muscle cell activation and neointima formation. Arterioscler. Thromb. Vasc. Biol. 31, 345–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, M. Y. et al. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler. Thromb. Vasc. Biol. 29, 480–487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Szocs, K. et al. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler. Thromb. Vasc. Biol. 22, 21–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Bengtsson, S. H., Gulluyan, L. M., Dusting, G. J. & Drummond, G. R. Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin. Exp. Pharmacol. Physiol. 30, 849–854 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Sheehan, A. L., Takapoo, M., Banfi, B. & Miller, F. J. J. Role for Nox1 NADPH oxidase in atherosclerosis. Circulation 116, II_244 (2007).

    Google Scholar 

  80. Lyle, A. N. et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ. Res. 105, 249–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Judkins, C. P. et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am. J. Physiol. Heart Circ. Physiol. 298, H24–H32 (2010). This was the first study to directly implicate a specific isoform of NADPH oxidase, namely NOX2 oxidase, in the pathogenesis of atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  82. Wind, S. et al. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension 56, 490–497 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Basuroy, S., Bhattacharya, S., Leffler, C. W. & Parfenova, H. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells. Am. J. Physiol. Cell Physiol. 296, C422–C432 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Basuroy, S., Tcheranova, D., Bhattacharya, S., Leffler, C. W. & Parfenova, H. Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis. Am. J. Physiol. Cell Physiol. 300, C256–C265 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Datla, S. R. et al. Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler. Thromb. Vasc. Biol. 27, 2319–2324 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Petry, A. et al. NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid. Redox Signal. 8, 1473–1484 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Peshavariya, H. et al. NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn Schmiedebergs Arch. Pharmacol. 380, 193–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Pedruzzi, E. et al. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol. Cell Biol. 24, 10703–10717 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gordillo, G., Fang, H., Park, H. & Roy, S. Nox-4-dependent nuclear H2O2 drives DNA oxidation resulting in 8-OHdG as urinary biomarker and hemangioendothelioma formation. Antioxid. Redox Signal. 12, 933–943 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu, R. F., Ma, Z., Liu, Z. & Terada, L. S. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol. Cell Biol. 30, 3553–3568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Clempus, R. E. et al. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 27, 42–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Sturrock, A. et al. Nox4 mediates TGF-β1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1543–L1555 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Ismail, S. et al. NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-β1 and insulin-like growth factor binding protein-3. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L489–L499 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Takac, I. et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304–13313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Loot, A. E., Schreiber, J. G., Fisslthaler, B. & Fleming, I. Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J. Exp. Med. 206, 2889–2896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Drummond, G. R., Cai, H., Davis, M. E., Ramasamy, S. & Harrison, D. G. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ. Res. 86, 347–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Thomas, S. R., Chen, K. & Keaney, J. F. Jr. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J. Biol. Chem. 277, 6017–6024 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Matoba, T. & Shimokawa, H. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J. Pharmacol. Sci. 92, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Paravicini, T. M., Chrissobolis, S., Drummond, G. R. & Sobey, C. G. Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke 35, 584–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Paravicini, T. M., Miller, A. A., Drummond, G. R. & Sobey, C. G. Flow-induced cerebral vasodilatation in vivo involves activation of phosphatidylinositol-3 kinase, NADPH-oxidase, and nitric oxide synthase. J. Cereb. Blood Flow Metab. 26, 836–845 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Lambeth, J. D., Kawahara, T. & Diebold, B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic. Biol. Med. 43, 319–331 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Banfi, B. et al. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 276, 37594–37601 (2001). This study led to the discovery of the Ca2+-dependent NADPH oxidase NOX5.

    Article  CAS  PubMed  Google Scholar 

  103. Jay, D. B. et al. Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells. Free Radic. Biol. Med. 45, 329–335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guzik, T. J. et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J. Am. Coll. Cardiol. 52, 1803–1809 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nature Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  Google Scholar 

  106. Segal, A. W. How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197–223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leto, T. L. & Geiszt, M. Role of Nox family NADPH oxidases in host defense. Antioxid. Redox Signal. 8, 1549–1561 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 27, 165–197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kalinina, N. et al. Cytochrome b558-dependent NAD(P)H oxidase-phox units in smooth muscle and macrophages of atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 22, 2037–2043 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Azenabor, A. A., Yang, S., Job, G. & Adedokun, O. O. Elicitation of reactive oxygen species in Chlamydia pneumoniae-stimulated macrophages: a Ca2+-dependent process involving simultaneous activation of NADPH oxidase and cytochrome oxidase genes. Med. Microbiol. Immunol. 194, 91–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Rosenblat, M. & Aviram, M. Oxysterol-induced activation of macrophage NADPH-oxidase enhances cell-mediated oxidation of LDL in the atherosclerotic apolipoprotein E deficient mouse: inhibitory role for vitamin E. Atherosclerosis 160, 69–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Harrison, D. G., Cai, H., Landmesser, U. & Griendling, K. K. Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J. Renin Angiotensin Aldosterone Syst. 4, 51–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Bae, Y. S. et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ. Res. 104, 210–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Jackson, S. H., Devadas, S., Kwon, J., Pinto, L. A. & Williams, M. S. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nature Immunol. 5, 818–827 (2004).

    Article  CAS  Google Scholar 

  115. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007). This was a seminal study showing that T cell-derived NOX2 oxidase activity is critical for the development of hypertension and endothelial dysfunction following chronic angiotensin II infusion in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Brait, V. H. et al. Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J. Cereb. Blood Flow Metab. 30, 1306–1317 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kraaij, M. D. et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl Acad. Sci. USA 107, 17686–17691 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Iadecola, C., Park, L. & Capone, C. Threats to the mind: aging, amyloid, and hypertension. Stroke 40, S40–S44 (2009).

    Article  PubMed  Google Scholar 

  119. Marvar, P. J. et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ. Res. 107, 263–270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Harrison, D. G., Vinh, A., Lob, H. & Madhur, M. S. Role of the adaptive immune system in hypertension. Curr. Opin. Pharmacol. 10, 203–207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Miller, A. A. et al. NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2. Am. J. Physiol. Heart Circ. Physiol. 296, H220–H225 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Miller, A. A., Drummond, G. R., Schmidt, H. H. & Sobey, C. G. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ. Res. 97, 1055–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Girouard, H. et al. NMDA receptor activation increases free radical production through nitric oxide and NOX2. J. Neurosci. 29, 2545–2552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kishida, K. T. et al. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol. Cell Biol. 26, 5908–5920 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pao, M. et al. Cognitive function in patients with chronic granulomatous disease: a preliminary report. Psychosomatics 45, 230–234 (2004).

    Article  PubMed  Google Scholar 

  126. Faraci, F. M. Reactive oxygen species: influence on cerebral vascular tone. J. Appl. Physiol. 100, 739–743 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Miller, A. A. et al. Augmented superoxide production by Nox2-containing NADPH oxidase causes cerebral artery dysfunction during hypercholesterolemia. Stroke 41, 784–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Kunz, A., Anrather, J., Zhou, P., Orio, M. & Iadecola, C. Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J. Cereb. Blood Flow Metab. 27, 545–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Walder, C. E. et al. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28, 2252–2258 (1997). This was the first demonstration that the absence of NOX2 oxidase in genetically modified mice confers protection against cerebral infarct development after experimental stroke.

    Article  CAS  PubMed  Google Scholar 

  130. Kleinschnitz, C. et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 8, e1000479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jackman, K. A., Miller, A. A., Drummond, G. R. & Sobey, C. G. Importance of NOX1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke. Brain Res. 1286, 215–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Kahles, T. et al. NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol. Dis. 40, 185–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Guzik, T. J. & Harrison, D. G. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov. Today 11, 524–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Lambeth, J. D., Krause, K. H. & Clark, R. A. NOX enzymes as novel targets for drug development. Semin. Immunopathol. 30, 339–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Cave, A. Selective targeting of NADPH oxidase for cardiovascular protection. Curr. Opin. Pharmacol. 9, 208–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Jaquet, V., Scapozza, L., Clark, R. A., Krause, K. H. & Lambeth, J. D. Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid. Redox Signal. 11, 2535–2552 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Wingler, K. et al. NOX 1, 2, 4, 5: Counting out oxidative stress. Br. J. Pharmacol. 16 Feb 2011 (doi: 10.1111/j.1476–5381.2011.0 1249.x).

  138. Bhandarkar, S. S. et al. Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice. J. Clin. Invest. 119, 2359–2365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ding, Y. et al. Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J. Pharm. Pharmacol. 57, 111–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Cayatte, A. J. et al. S17834, a new inhibitor of cell adhesion and atherosclerosis that targets NADPH oxidase. Arterioscler. Thromb. Vasc. Biol. 21, 1577–1584 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Jaulmes, A. et al. Nox4 mediates the expression of plasminogen activator inhibitor-1 via p38 MAPK pathway in cultured human endothelial cells. Thromb. Res. 124, 439–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Kalinowski, L., Dobrucki, I. T. & Malinski, T. Race-specific differences in endothelial function: predisposition of African Americans to vascular diseases. Circulation 109, 2511–2517 (2004).

    Article  PubMed  Google Scholar 

  143. Zang, M. et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55, 2180–2191 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Stielow, C. et al. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem. Biophys. Res. Commun. 344, 200–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. ten Freyhaus, H. et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc. Res. 71, 331–341 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Wind, S. et al. Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br. J. Pharmacol. 161, 885–898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tsai, M. H. & Jiang, M. J. Reactive oxygen species are involved in regulating α1-adrenoceptor-activated vascular smooth muscle contraction. J. Biomed. Sci. 17, 67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Laleu, B. et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715–7730 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Gianni, D. et al. A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem. Biol. 5, 981–993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Borbely, G. et al. Small-molecule inhibitors of NADPH oxidase 4. J. Med. Chem. 53, 6758–6762 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Banfi, B. et al. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J. Biol. Chem. 279, 46065–46072 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Paffenholz, R. et al. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev. 18, 486–491 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cheranov, S. Y. & Jaggar, J. H. TNF-α dilates cerebral arteries via NAD(P)H oxidase-dependent Ca2+ spark activation. Am. J. Physiol. Cell Physiol. 290, C964–C971 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Ris-Stalpers, C. Physiology and pathophysiology of the DUOXes. Antioxid. Redox Signal. 8, 1563–1572 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Kuhns, D. B. et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N. Engl. J. Med. 363, 2600–2610 (2010). This study demonstrates that severe illness and poor long-term survival in patients with CGD is only evident in individuals whose phagocytic ROS production is more than two orders of magnitude lower than in healthy controls. This observation provides comfort that therapeutic targeting of NOX2 oxidase activity to alleviate vascular oxidative stress is unlikely to compromise systemic immune function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cheng, G., Cao, Z., Xu, X., van Meir, E. G. & Lambeth, J. D. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269, 131–140 (2001). This was a study identifying three novel NOX homologues, two of which (NOX4 and NOX5) are likely to have important roles in vascular physiology and pathophysiology.

    Article  CAS  PubMed  Google Scholar 

  157. O'Donnell, B. V., Tew, D. G., Jones, O. T. & England, P. J. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem. J. 290, 41–49 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. O'Donnell, V. B., Smith, G. C. & Jones, O. T. Involvement of phenyl radicals in iodonium inhibition of flavoenzymes. Mol. Pharmacol. 46, 778–785 (1994).

    CAS  PubMed  Google Scholar 

  159. El-Benna, J., Dang, P. M., Gougerot-Pocidalo, M. A., Marie, J. C. & Braut-Boucher, F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp. Mol. Med. 41, 217–225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lassegue, B. & Griendling, K. K. Nox is playing with a full deck in vascular smooth muscle, a commentary on “Noxa1 is a central component of the smooth muscle NADPH oxidase in mice”. Free Radic. Biol. Med. 41, 185–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Finan, P., Koga, H., Zvelebil, M. J., Waterfield, M. D. & Kellie, S. The C-terminal SH3 domain of p67phox binds its natural ligand in a reverse orientation. J. Mol. Biol. 261, 173–180 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Finan, P. et al. An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J. Biol. Chem. 269, 13752–13755 (1994).

    CAS  PubMed  Google Scholar 

  163. Fuchs, A., Dagher, M. C., Faure, J. & Vignais, P. V. Topological organization of the cytosolic activating complex of the superoxide-generating NADPH-oxidase. Pinpointing the sites of interaction between p47phoz, p67phox and p40phox using the two-hybrid system. Biochim. Biophys. Acta 1312, 39–47 (1996).

    Article  PubMed  Google Scholar 

  164. Hata, K., Takeshige, K. & Sumimoto, H. Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro. Biochem. Biophys. Res. Commun. 241, 226–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  165. Wilson, L., Butcher, C., Finan, P. & Kellie, S. SH3 domain-mediated interactions involving the phox components of the NADPH oxidase. Inflamm. Res. 46, 265–271 (1997).

    Article  CAS  PubMed  Google Scholar 

  166. Kami, K., Takeya, R., Sumimoto, H. & Kohda, D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J. 21, 4268–4276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mizuki, K. et al. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Arch. Biochem. Biophys. 444, 185–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Banfi, B., Clark, R. A., Steger, K. & Krause, K. H. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J. Biol. Chem. 278, 3510–3513 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Takeya, R. et al. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J. Biol. Chem. 278, 25234–25246 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Yuzawa, S. et al. Solution structure of the tandem Src homology 3 domains of p47phox in an autoinhibited form. J. Biol. Chem. 279, 29752–29760 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Yuzawa, S. et al. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes Cells 9, 443–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Groemping, Y., Lapouge, K., Smerdon, S. J. & Rittinger, K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343–355 (2003). This study reported two crystal structures of the core of p47phox, both in its auto-inhibited form and in its activated form, bound to its cognate target peptide from the cytosolic portion of p22phox.

    Article  CAS  PubMed  Google Scholar 

  173. Hiroaki, H., Ago, T., Ito, T., Sumimoto, H. & Kohda, D. Solution structure of the PX domain, a target of the SH3 domain. Nature Struct. Biol. 8, 526–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Marcoux, J. et al. p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex. J. Biol. Chem. 285, 28980–28990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ago, T. et al. Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc. Natl Acad. Sci. USA 100, 4474–4479 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ago, T., Nunoi, H., Ito, T. & Sumimoto, H. Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47phox, thereby activating the oxidase. J. Biol. Chem. 274, 33644–33653 (1999).

    Article  CAS  PubMed  Google Scholar 

  177. Hoyal, C. R. et al. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc. Natl Acad. Sci. USA 100, 5130–5135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Huang, J. & Kleinberg, M. E. Activation of the phagocyte NADPH oxidase protein p47phox. Phosphorylation controls SH3 domain-dependent binding to p22phox. J. Biol. Chem. 274, 19731–19737 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Ximenes, V. F., Kanegae, M. P., Rissato, S. R. & Galhiane, M. S. The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch. Biochem. Biophys. 457, 134–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Sumimoto, H. et al. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc. Natl Acad. Sci. USA 91, 5345–5349 (1994). This paper was one of the first reports on the crucial roles of the interactions between SH3 domains and PRR for the association of p47phox with both p22phox in the membrane and p67phox in the cytosol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Watanabe, Y. et al. Molecular dynamics study on the ligand recognition by tandem SH3 domains of p47phox, regulating NADPH oxidase activity. Comput. Biol. Chem. 30, 303–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Nobuhisa, I. et al. Activation of the superoxide-producing phagocyte NADPH oxidase requires co-operation between the tandem SH3 domains of p47phox in recognition of a polyproline type II helix and an adjacent α-helix of p22phox. Biochem. J. 396, 183–192 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Leto, T. L., Adams, A. G. & de Mendez, I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc. Natl Acad. Sci. USA 91, 10650–10654 (1994). This paper was also one of the first reports on the crucial roles of interactions between SH3 domains and PRRs for the association of p47phox with both p22phox in the membrane and p67phox in the cytosol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shi, J., Ross, C. R., Leto, T. L. & Blecha, F. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47phox. Proc. Natl Acad. Sci. USA 93, 6014–6018 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ogura, K. et al. NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide. J. Biol. Chem. 281, 3660–3668 (2006). This study shows the three-dimensional NMR structure of one of the sites on p47phox that is crucial to activation of NADPH oxidase. In this article we have provided a working example of how this information, in conjunction with molecular modelling, virtual library screening and in vitro validation studies, may be used as a platform for the discovery of novel lead compounds.

    Article  CAS  PubMed  Google Scholar 

  186. DeLeo, F. R. et al. Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc. Natl Acad. Sci. USA 92, 7110–7114 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. De Leo, F. R., Ulman, K. V., Davis, A. R., Jutila, K. L. & Quinn, M. T. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J. Biol. Chem. 271, 17013–17020 (1996).

    Article  CAS  PubMed  Google Scholar 

  188. DeLeo, F. R. et al. A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J. Biol. Chem. 270, 26246–26251 (1995). The previous two studies used phage display mapping to demonstrate that p47phox interacts directly with the NOX2 catalytic subunit in the assembled NADPH oxidase complex. Peptide mimetics of these sites of interaction were shown to be effective inhibitors of NADPH oxidase activity.

    Article  CAS  PubMed  Google Scholar 

  189. Rotrosen, D. et al. Evidence for a functional cytoplasmic domain of phagocyte oxidase cytochrome b558. J. Biol. Chem. 265, 8745–8750 (1990).

    CAS  PubMed  Google Scholar 

  190. Park, M. Y., Imajoh-Ohmi, S., Nunoi, H. & Kanegasaki, S. Synthetic peptides corresponding to various hydrophilic regions of the large subunit of cytochrome b558 inhibit superoxide generation in a cell-free system from neutrophils. Biochem. Biophys. Res. Commun. 234, 531–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  191. DeLeo, F. R., Jutila, M. A. & Quinn, M. T. Characterization of peptide diffusion into electropermeabilized neutrophils. J. Immunol. Methods 198, 35–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  192. Dourron, H. M. et al. Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. Am. J. Physiol. Heart Circ. Physiol. 288, H946–H953 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Weaver, M. et al. Adventitial delivery of dominant-negative p67phox attenuates neointimal hyperplasia of the rat carotid artery. Am. J. Physiol. Heart Circ. Physiol. 290, H1933–H1941 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Cheng, G. & Lambeth, J. D. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J. Biol. Chem. 279, 4737–4742 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Cheng, G. & Lambeth, J. D. Alternative mRNA splice forms of NOXO1: differential tissue expression and regulation of Nox1 and Nox3. Gene 356, 118–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Ponting, C. P. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci. 5, 2353–2357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol. 3, 675–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  198. Karathanassis, D. et al. Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21, 5057–5068 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Goldblatt, D. & Thrasher, A. J. Chronic granulomatous disease. Clin. Exp. Immunol. 122, 1–9 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Holland, S. M. Chronic granulomatous disease. Clin. Rev. Allergy Immunol. 38, 3–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Winkelstein, J. A. et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79, 155–169 (2000).

    Article  CAS  Google Scholar 

  202. Towbin, A. J. & Chaves, I. Chronic granulomatous disease. Pediatr. Radiol. 40, 657–668 (2010).

    Article  PubMed  Google Scholar 

  203. Yogi, A. et al. Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension 51, 500–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  204. Wang, H. D. et al. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ. Res. 88, 947–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Carlstrom, M. et al. Role of NOX2 in the regulation of afferent arteriole responsiveness. Am. J. Physiol. Regul. Integr Comp. Physiol. 296, R72–R79 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Touyz, R. M. et al. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 45, 530–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Bendall, J. K. et al. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circ. Res. 100, 1016–1025 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Landmesser, U. et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40, 511–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  209. Miriyala, S. et al. Bone morphogenic protein-4 induces hypertension in mice: role of noggin, vascular NADPH oxidases, and impaired vasorelaxation. Circulation 113, 2818–2825 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Kirk, E. A. et al. Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 20, 1529–1535 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Hsich, E. et al. Vascular effects following homozygous disruption of p47phox: an essential component of NADPH oxidase. Circulation 101, 1234–1236 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Barry-Lane, P. A. et al. p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. J. Clin. Invest. 108, 1513–1522 (2001). This was the first study to provide definitive evidence that NADPH oxidase activity contributes to the development of atherosclerotic plaques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Vendrov, A. E. et al. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler. Thromb. Vasc. Biol. 27, 2714–2721 (2007).

    Article  CAS  PubMed  Google Scholar 

  214. Chen, Z. et al. Decreased neointimal formation in Nox2-deficient mice reveals a direct role for NADPH oxidase in the response to arterial injury. Proc. Natl Acad. Sci. USA 101, 13014–13019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Diatchuk, V., Lotan, O., Koshkin, V., Wikstroem, P. & Pick, E. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J. Biol. Chem. 272, 13292–13301 (1997).

    Article  CAS  PubMed  Google Scholar 

  216. Simons, J. M. et al. Immunodulatory compounds from Picrorhiza kurroa: isolation and characterization of two anti-complementary polymeric fractions from an aqueous root extract. J. Ethnopharmacol. 26, 169–182 (1989).

    Article  CAS  PubMed  Google Scholar 

  217. Stolk, J., Hiltermann, T. J., Dijkman, J. H. & Verhoeven, A. J. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am. J. Respir. Cell. Mol. Biol. 11, 95–102 (1994).

    Article  CAS  PubMed  Google Scholar 

  218. ' T Hart, B. A., Simons, J. M., Knaan-Shanzer, S., Bakker, N. P. & Labadie, R. P. Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radic. Biol. Med. 9, 127–131 (1990).

    Article  CAS  Google Scholar 

  219. Stuehr, D. J. et al. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 5, 98–103 (1991).

    Article  CAS  PubMed  Google Scholar 

  220. Gatley, S. J. & Sherratt, H. S. The effects of diphenyleneiodonium and of 2,4-dichlorodiphenyleneiodonium on mitochondrial reactions. Mechanism of the inhibition of oxygen uptake as a consequence of the catalysis of the chloride/hydroxyl-ion exchange. Biochem. J. 158, 317–326 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Cross, A. R., Parkinson, J. F. & Jones, O. T. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations. Biochem. J. 223, 337–344 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Cross, A. R. & Jones, O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem. J. 237, 111–116 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Brandsch, R. & Bichler, V. Studies in vitro on the flavinylation of 6-hydroxy-D-nicotine oxidase. Eur. J. Biochem. 160, 285–289 (1986).

    Article  CAS  PubMed  Google Scholar 

  224. Sedeek, M. et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 299, F1348–F1358 (2010).

    Article  CAS  PubMed  Google Scholar 

  225. Rossary, A., Arab, K. & Steghens, J. P. Polyunsaturated fatty acids modulate NOX 4 anion superoxide production in human fibroblasts. Biochem. J. 406, 77–83 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Fan, C., Katsuyama, M., Nishinaka, T. & Yabe-Nishimura, C. Transactivation of the EGF receptor and a PI3 kinase-ATF-1 pathway is involved in the upregulation of NOX1, a catalytic subunit of NADPH oxidase. FEBS Lett. 579, 1301–1305 (2005).

    Article  CAS  PubMed  Google Scholar 

  227. Ueno, N., Takeya, R., Miyano, K., Kikuchi, H. & Sumimoto, H. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J. Biol. Chem. 280, 23328–23339 (2005).

    Article  CAS  PubMed  Google Scholar 

  228. Rivera, J., Sobey, C. G., Walduck, A. K. & Drummond, G. R. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep. 15, 50–63 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Brandes, F. Faraci, C. Iadecola and P. Pagano for their expert advice during the preparation of this manuscript, and to J. Rivera for compiling the information presented in Table 1. We also acknowledge the National Health and Medical Research Council of Australia for Fellowship and Project Grant support (IDs 606472, 1006017, 545942, 570861, 606488 and 1010984), the Heart Foundation of Australia for Grant-in-aid support (G 09M 4398 and G 10M 5218), the Cancer Council of Victoria for a Project Grant (606674), and the US National Institutes of Health for grant support (HL38206, HL058863, HL092120 and HL095070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant R. Drummond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Sobey, Drummond and Selemidis — The Vascular Biology and Immunopharmacology Group homepage

Griendling laboratory homepage

Glossary

Innate immunity

The first line of defense against invading microorgansims. This is mediated by a combination of anatomical barriers (such as skin and internal epithelial surfaces), physiological barriers (such as raised body temperature), secretory molecules (such as digestive enzymes, complement and interferons) and certain kinds of leukocytes (such as macrophages, neutrophils, mast cells and so on).

Microbicidal burst

The rapid release of reactive oxygen species such as superoxide and hydrogen peroxide by white blood cells (for example, neutrophils and macrophages) to eliminate invading microorganisms from the body.

Oxidative stress

An imbalance between the production and inactivation of reactive oxygen species within a biological system, which often results in redox-sensitive modification of macromolecules — including proteins, nucleotides and lipids — and leads to cellular toxicity.

Professional phagocytes

Cells that are able to engulf (phagocytose) particles such as invading pathogens, dead host cells and cell debris with high efficiency. Such cells include monocytes, macrophages, neutrophils, dendritic cells and mast cells.

Acute cardiovascular events

Cardiovascular end points — such as stroke and heart attacks — that result from the sudden cessation of blood flow through arteries owing to a stenosis or a thromboembolus.

Arterial remodelling

A term used to describe any persistent change in the cross-sectional area of a blood vessel. Remodelling may be outward, in which the vessel expands to accommodate a stenosis, or inward, as a result of medial hypertrophy in hypertension, intimal thickening owing to atherosclerosis, transplant vasculopathy or restenosis after balloon angioplasty.

Thrombosis

The formation of a blood clot within a blood vessel.

Restenosis

The reoccurrence of a stenosis leading to restricted blood flow, occurring at a site on the artery that received angioplasty treatment to clear an initial stenosis.

Atherosclerotic plaque

An accumulation of inflammatory cells — mainly macrophages — and cell debris containing lipids, cholesterol, calcium and fibrous connective tissue, which leads to the enlargement of the artery wall.

Redox state

The reduction or oxidation state of a molecule, which is governed by the number of electrons gained or transferred in a chemical reaction.

Adhesion molecules

Integral membrane proteins including integrins, selectins and certain immunoglobulins that mediate the binding of one cell to other cells or extracellular matrix proteins.

Metalloproteinases

A family of protease enzymes possessing a metal centre (most often Zn2+) as the key functional group in their catalytic site.

Inflammasomes

Multiprotein signalling platforms that are activated in response to pathogens or host-derived stress signals that trigger the maturation of pro-inflammatory cytokines such as interleukin-1β and interleukin-18.

Cohort studies

An analytical study that follows the same group of people over a long period of time and is often used to assess risk of disease.

Endothelial dysfunction

A shift in the activation state of the endothelium towards reduced production of vasodilator substances, such as nitric oxide, and increased production of pro-inflammatory and prothrombotic mediators.

EF hand motifs

A protein structural domain that is involved in binding Ca2+, and is characterized by a helix–loop–helix topology that has a conformation similar in shape to the spread thumb and forefinger of the hand.

Binding pockets

Regions on a protein that other smaller molecules, termed ligands, can dock onto in a highly specific fashion through the formation of chemical bonds. Such ligands can include endogenous factors such as hormones or neurotransmitters, or exogenous substances such as drugs.

X-ray crystallography

A method of determining the three-dimensional arrangement of atoms within a crystalline substance based on the diffraction pattern generated following bombardment of the crystal with a beam of X-rays.

Phox homology (PX) domain

A conserved protein structural domain that is involved in the targeting of proteins to cellular membranes by binding to phosphoinositides.

Phage display mapping

A method for the study of protein–protein interactions in which proteins of interest are immobilized and exposed to peptide-presenting bacteriophages. Bacteriophages that bind to the protein are used to infect a bacterial host from which the phagemid is collected and the relevant DNA is sequenced and used to predict the primary sequence of the bound peptide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drummond, G., Selemidis, S., Griendling, K. et al. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10, 453–471 (2011). https://doi.org/10.1038/nrd3403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3403

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research