Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of chemogenomic library screening in drug discovery

Key Points

  • A chemogenomic library is a collection of well-defined pharmacological agents. A hit from such a set in a phenotypic screen suggests that the annotated target or targets of the probe molecules are involved in the phenotypic perturbation.

  • The creation and utility of a number of chemogenomic libraries have been described, by academia and industry, and some are commercially available.

  • Chemogenomic screening has the potential to expedite the conversion of phenotypic screening projects into target-based drug discovery approaches. Other applications include drug repositioning, predictive toxicology and the discovery of novel pharmacological modalities.

  • Target identification from phenotypic screening can benefit from the integration of small-molecule chemogenomics with genetic approaches, such as RNA-mediated interference and CRISPR–Cas9.

  • Current limitations of chemogenomic screening include small-molecule polypharmacology, misannotation of biological activity and false-positive results (deriving from compound fluorescence or luciferase reporter binding) for example, although opportunities to overcome these issues, particularly through the incorporation of computational techniques, are emerging.

  • 'Open innovation' and collaborative ventures across academia and industry are required to create and assemble the best pharmacological probes for chemogenomic libraries.

Abstract

The allure of phenotypic screening, combined with the industry preference for target-based approaches, has prompted the development of innovative chemical biology technologies that facilitate the identification of new therapeutic targets for accelerated drug discovery. A chemogenomic library is a collection of selective small-molecule pharmacological agents, and a hit from such a set in a phenotypic screen suggests that the annotated target or targets of that pharmacological agent may be involved in perturbing the observable phenotype. In this Review, we describe opportunities for chemogenomic screening to considerably expedite the conversion of phenotypic screening projects into target-based drug discovery approaches. Other applications are explored, including drug repositioning, predictive toxicology and the discovery of novel pharmacological modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A typical chemogenomic screen sequence.
Figure 2: Gene families and biological pathways covered in example chemogenomic libraries.

Similar content being viewed by others

References

  1. Bunnage, M. E. Getting pharmaceutical R&D back on target. Nat. Chem. Biol. 7, 335–339 (2011).

    CAS  PubMed  Google Scholar 

  2. Cong, F., Cheung, A. K. & Huang, S.-M. A. Chemical genetics-based target identification in drug discovery. Ann. Rev. Pharmacol. Toxicol. 52, 57–78 (2012).

    CAS  Google Scholar 

  3. Lee, J. A., Uhlik, M. T., Moxham, C. M., Tomandl, D. & Sall, D. J. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J. Med. Chem. 55, 4527–4538 (2012).

    CAS  PubMed  Google Scholar 

  4. Lee, J. A. & Berg, E. L. Neoclassic drug discovery: the case for lead generation using phenotypic and functional approaches. J. Biomol. Screen. 18, 1143–1155 (2013).

    CAS  PubMed  Google Scholar 

  5. Bai, J. P. & Abernethy, D. R. Systems pharmacology to predict drug toxicity: integration across levels of biological organization. Annu. Rev. Pharmacol. Toxicol. 53, 451–473 (2013).

    CAS  PubMed  Google Scholar 

  6. Bantscheff, M. & Drewes, G. Chemoproteomic approaches to drug target identification and drug profiling. Bioorg. Med. Chem. 20, 1973–1978 (2012).

    CAS  PubMed  Google Scholar 

  7. Jensen, A. J., Martinez Molina, D. & Lundbäck, T. CETSA: a target engagement assay with potential to transform drug discovery. Future Med. Chem. 7, 975–978 (2015).

    CAS  PubMed  Google Scholar 

  8. Schenone, M., Dançík, V., Wagner, B. K. & Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang, H. et al. Target identification of compounds from a cell viability phenotypic screen using a bead/lysate-based affinity capture platform. J. Biomol. Screen. 21, 201–211 (2016).

    CAS  PubMed  Google Scholar 

  10. Caron, P. R. et al. Chemogenomic approaches to drug discovery. Curr. Opin. Chem. Biol. 5, 464–470 (2001).

    CAS  PubMed  Google Scholar 

  11. Bredel, M. & Jacoby, E. Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat. Rev. Genet. 5, 262–275 (2004).

    CAS  PubMed  Google Scholar 

  12. Klabunde, T. Chemogenomic approaches to drug discovery: similar receptors bind similar ligands. Br. J. Pharmacol. 152, 5–7 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nijman, S. M. Functional genomics to uncover drug mechanism of action. Nat. Chem. Biol. 11, 942–948 (2015).

    CAS  PubMed  Google Scholar 

  14. Bunnage, M. E., Chekler, E. L. & Jones, L. H. Target validation using chemical probes. Nat. Chem. Biol. 9, 195–199 (2013).

    CAS  PubMed  Google Scholar 

  15. Fennell, M. et al. Impact of RNA-guided technologies for target identification and deconvolution. J. Biomol. Screen. 19, 1327–1337 (2014).

    CAS  PubMed  Google Scholar 

  16. Chindelevitch, L. et al. Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28, 1114–1121 (2012).

    CAS  PubMed  Google Scholar 

  17. Lanz, T. A. et al. Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action. Mol. Autism 4, 45 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Hasson, S. A. et al. Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. ACS Chem. Biol. 10, 1188–1197 (2015).

    CAS  PubMed  Google Scholar 

  19. Quintavalle, M., Elia, L., Price, J. H., Heynen-Genel, S. & Courtneidge, S. A. A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Sci. Signal. 4, ra49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dranchak, P. et al. Profile of the GSK published protein kinase inhibitor set across ATP-dependent and independent luciferases: implications for reporter-gene assays. PLoS ONE 8, e57888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wassermann, A. M., Camargo, L. M. & Auld, D. S. Composition and applications of focus libraries to phenotypic assays. Front. Pharmacol. 5, 164 (2014). This review summarizes approaches to analyse and interpret annotated chemical libraries, which are important to consider when creating and applying chemogenomic sets.

    PubMed  PubMed Central  Google Scholar 

  22. Tarcsay, Á. & Keserũ, G. M. Contributions of molecular properties to drug promiscuity. J. Med. Chem. 56, 1789–1795 (2013).

    CAS  PubMed  Google Scholar 

  23. Edwards, A. M. et al. Too many roads not taken. Nature 470, 163–165 (2011).

    CAS  PubMed  Google Scholar 

  24. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    CAS  PubMed  Google Scholar 

  25. Boettcher, M. & McManus, M. T. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol. Cell 58, 575–585 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Malo, N., Hanley, J. A., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in high-throughput screening data analysis. Nat. Biotechnol. 24, 167–175 (2006).

    CAS  PubMed  Google Scholar 

  27. Thorne, N., Auld, D. S. & Inglese, J. Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr. Opin. Chem. Biol. 14, 315–324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Segall, M. Advances in multiparameter optimization methods for de novo drug design. Expert Opin. Drug Discov. 9, 803–817 (2014).

    PubMed  Google Scholar 

  29. Baell, J. & Walters, M. A. Chemical con artists foil drug discovery. Nature 513, 481–483 (2014).

    CAS  PubMed  Google Scholar 

  30. Skerrat, S. E., Mills, J. E. J. & Mistry, J. Identification of false positives in “HTS hits to lead”: the application of Bayesian models in HTS triage to rapidly deliver a series of selective TRPV4 antagonists. Med. Chem. Commun. 4, 244–251 (2013).

    Google Scholar 

  31. Jones, L. H. Chemogenomic screening identifies small molecule up-regulators of MBNL1 for the treatment of type 1 myotonic dystrophy. EventPilot https://ep70.eventpilotadmin.com/web/page.php?page=Session&project=ACS16spring&id=2367944 (2016).

  32. Denicolaï, E. et al. Proscillaridin A is cytotoxic for lioblastoma cell lines and controls tumor xenograft growth in vivo. Oncotarget 5, 10934–10948 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Liu, C. et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res. 20, 3198–3210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Y. et al. A novel approach applying a chemical biology strategy in phenotypic screening reveals pathway-selective regulators of histone 3 K27 tri-methylation. Mol. BioSyst. 10, 251–257 (2014).

    CAS  PubMed  Google Scholar 

  35. Hadimioglu, B., Stearns, R. & Ellson, R. Moving liquids with sound: the physics of acoustic droplet ejection for robust laboratory automation in life sciences. J. Lab. Autom. 21, 4–18 (2016).

    PubMed  Google Scholar 

  36. Bogen, D. et al. Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma. Oncotarget 6, 35247–35262 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Patel, P. R. et al. Identification of potent Yes1 kinase inhibitors using a library screening approach. Bioorg. Med. Chem. Lett. 23, 4398–4403 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gross, S., Rahal, R., Stransky, N., Lengauer, C. & Hoeflich, K. P. Targeting cancer with kinase inhibitors. J. Clin. Invest. 125, 1780–1789 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Schreiber, S. L. et al. Advancing biological understanding and therapeutics discovery with small-molecule probes. Cell 161, 1252–1265 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Howe, E. A. et al. BioAssay Research Database (BARD): chemical biology and probe-development enabled by structured metadata and result types. Nucleic Acids Res. 43, D1163–D1170 (2015).

    CAS  PubMed  Google Scholar 

  41. Antolín, A. A. & Mestres, J. Distant polypharmacology among MLP chemical probes. ACS Chem. Biol. 10, 395–400 (2015).

    PubMed  Google Scholar 

  42. Drewry, D. H., Wilson, T. M. & Zuercher, W. J. Seeding collaborations to advance kinase science with the GSK published kinase inhibitor set (PKIS). Curr. Top. Med. Chem. 14, 340–342 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Elkins, J. M. et al. Comprehensive characterization of the Published Kinase Inhibitor Set. Nat. Biotechnol. 34, 95–103 (2015).

    PubMed  Google Scholar 

  44. Schulz, M. M. P. et al. Phenotype-based high content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. Proc. Natl Acad. Sci. USA 109, E2665–E2674 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hong, A. L. et al. Integrated genetic and pharmacologic interrogation of rare cancers. Nat. Commun. 7, 11987 (2016). This study demonstrated the power of integrating chemogenomic screening with genetic methods (such as RNAi and CRISPR–Cas9) to identify new therapeutic targets for a rare type of sarcoma.

  47. Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Scheipl, S. et al. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J. Pathol. 239, 320–334 (2016). In this study, a chemogenomic screen identified repurposing opportunities for EGFR inhibitors as treatments for a rare malignant bone tumour. In cell lines that were sensitive to EGFR inhibitors, treatment-induced apoptosis was associated with reduced phosphorylation of EGFR.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Eriksson, A. et al. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia. Blood Cancer J. 5, e307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Carver, J. et al. A high-throughput assay for small molecule destabilizers of the KRAS oncoprotein. PLoS ONE 9, e103836 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. O'Hare, T. et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16, 401–412 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Griner, L. A. M. et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse B-cell lymphoma cells. Proc. Natl Acad. Sci. USA 111, 2349–2354 (2014). This study identified new therapeutically relevant anticancer drug combinations using chemogenomic screening.

    Google Scholar 

  54. Cervantes-Gomez, F. et al. Pharmacological and protein profiling suggests venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia. Clin. Cancer Res. 21, 3705–3715 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ju, W. et al. Augmented efficacy of brentuximab vedotin combined with ruxolitinib and/or navitoclax in a murine model of human Hodgkin's lymphoma. Proc. Natl Acad. Sci. USA 113, 1624–1629 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Berg, E. L., Kunkel, E. J., Hytopoulos, E. & Plavec, I. Characterization of compound mechanisms and secondary activities by BioMAP analysis. J. Pharmacol. Toxicol. Methods 53, 67–74 (2006).

    CAS  PubMed  Google Scholar 

  58. Kleinstreuer, N. C. et al. Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 32, 583–591 (2014).

    CAS  PubMed  Google Scholar 

  59. Peck, D. et al. A method for high-throughput gene expression signature analysis. Genome Biol. 7, R61 (2006).

    PubMed  PubMed Central  Google Scholar 

  60. Wang, Z., Clark, N. R. & Ma'ayan, A. Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics 32, 2338–2345 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Futamura, Y. et al. Morphobase, an encyclopedic cell morphology database, and its use for drug target identification. Chem. Biol. 19, 1620–1630 (2012).

    CAS  PubMed  Google Scholar 

  62. Kang, J. et al. Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines. Nat. Biotechnol. 34, 70–77 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Breinig, M., Klein, F. A., Huber, W. & Boutros, M. A chemical–genetic interaction map of small molecules using high-throughput imaging in cancer cells. Mol. Syst. Biol. 11, 846 (2015). In this study, high-content chemogenomic screening revealed novel gene–drug interactions and led to the creation of the Pharmacogenetic Phenome Compendium, which will help in future target identification and drug repurposing efforts.

    PubMed  PubMed Central  Google Scholar 

  64. Gallardo, V. E. et al. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. Dis. Model. Mech. 8, 565–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kälin, R. E., Bänziger-Tobler, N. E., Detmar, M. & Brändli, A. W. An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis. Blood 114, 1110–1122 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Kawahara, G. et al. Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 108, 5331–5336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Adamo, C. M. et al. Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 107, 19079–19083 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. Kilty, I. et al. TAK1 inhibition in the DFG-out conformation. Chem. Biol. Drug Des. 82, 500–505 (2013).

    CAS  PubMed  Google Scholar 

  69. Millan, D. S. et al. Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease. J. Med. Chem. 54, 7797–7814 (2011).

    CAS  PubMed  Google Scholar 

  70. Tokarski, J. S. et al. Tyrosine kinase 2-mediated signal transduction in T lymphocytes is blocked by pharmacological stabilization of its pseudokinase domain. J. Biol. Chem. 290, 11061–11074 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Polier, S. et al. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90–Cdc37 system. Nat. Chem. Biol. 9, 307–312 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Targett-Adams, P. et al. Small molecules targeting hepatitis C virus-encoded NS5A cause subcellular redistribution of their target: insights into compound mode of action. J. Virol. 85, 6353–6368 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ito, T. & Handa, H. Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs. Int. J. Hematol. 104, 293–299 (2016).

    PubMed  Google Scholar 

  74. Fink, E. C. & Ebert, B. L. The novel mechanism of lenalidomide activity. Blood 126, 2366–2369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu, C. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16, 142–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Osborn, M. F. et al. Guanabenz (Wytensin) selectively enhances uptake and efficacy of hydrophobically modified siRNAs. Nucleic Acids Res. 43, 8664–8672 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nicolson, S. C., Li, C., Hirsch, M. L., Setola, V. & Samulski, R. J. Identification and validation of small molecules that enhance recombinant adeno-associated virus transduction following high throughput screen. J. Virol. 90, 7019–7031 (2016). This proof-of-concept study highlighted opportunities for the synergistic combination of small molecules with alternative modalities (gene therapy in this case) that can be facilitated by chemogenomics.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Edwards, A. M. et al. Preclinical target validation using patient-derived cells. Nat. Rev. Drug Discov. 14, 149–150 (2015).

    PubMed  Google Scholar 

  79. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tipton, K. F. et al. Standards for reporting enzyme data: the STRENDA Consortium: what it aims to do and why it should be helpful. Perspect. Sci. 1, 131–137 (2014).

    Google Scholar 

  81. Alexander, S. P. H. et al. The concise guide to PHARMACOLOGY 2015/2016: overview. Br. J. Pharmacol. 172, 5729–5743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Digles, D. et al. Open PHACTS computational protocols for in silico target validation of cellular phenotypic screens: knowing the knowns. Med. Chem. Commun. 7, 1237–1244 (2016).

    CAS  Google Scholar 

  83. Haverty, P. M. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 533, 333–337 (2016).

    CAS  PubMed  Google Scholar 

  84. Edwards, A. Reproducibility: team up with industry. Nature 531, 299–301 (2016).

    CAS  PubMed  Google Scholar 

  85. Wang, Y. et al. Evidence-based and quantitative prioritization of tool compounds in phenotypic drug discovery. Cell Chem. Biol. 23, 862–874 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the following for providing information regarding the chemogenomic libraries described in this Review: Michael Earley (Sigma-Aldrich; Library of Pharmacologically Active Compounds (LOPAC1280)); William Zuercher (University of North Carolina at Chapel Hill; Published Kinase Inhibitor Set); Craig Thomas (National Center for Advancing Translational Sciences; Mechanism Interrogation PlatE). They also thank the following Pfizer employees for their contributions to the creation of the Pfizer chemogenomic library: Samit Bhattacharya, Markus Boehm, Philip Carpino, Agustin Casimiro-Garcia, Thomas Chappie, Ye Che, Eugene Chekler, Leslie Dakin, Robert Dow, David Edmonds, Andrew Fensome, Kevin Filipski, Adam Gilbert, Rose Gonzales, Ariamala Gopalsamy, David Gray, Matthew Hayward, Jaclyn Henderson, David Hepworth, Peter Jones, Neelu Kaila, John Kath, Jacquelyn Klug-McLeod, Esther Lee, Bruce Lefker, Allyn Londregan, Frank Lovering, Eric Marr, Christopher McClendon, Dale McLeod, Arjun Narayanan, Whitney Nolte, Dafydd Owen, Robert Owen, David Piotrowski, David Pryde, Brian Raymer, Yong Ren, Lee Roberts, Matthew Sammons, Mark Schnute, Sarah Skerratt, Ian Storer, Joseph Strohbach, Nigel Swain, Atli Thorarensen, Ray Unwalla, Michael Vazquez, Fabien Vincent, Christoph Zapf and Lei Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyn H. Jones.

Ethics declarations

Competing interests

L.H.J. and M.E.B. were Pfizer employees and shareholders during the preparation of this Review.

Related links

PowerPoint slides

Glossary

Chemogenomic screening set

Collections of small-molecule pharmacological modulators that have well-annotated biological activity.

Causal Reasoning Engine

An algorithm that uses omic data and causal statements from the literature to infer upstream molecular events and derive mechanistic hypotheses linked to the observed change.

Multiparameter optimizations

Algorithms that allow several variables to be balanced and assessed on the basis of their importance relative to the specified objective.

Pan-assay interference compounds

(PAINs). Compounds that often appear as false-positive hits in screens owing to promiscuous binding, fluorescence, redox activity or metal chelation effects.

High-content

A term used in this Review to describe a cell-based assay that measures several parameters, often using automated imaging analysis.

Perturbagens

Modalities — such as genetic reagents (for example, short interfering RNA and short hairpin RNA), small molecules, proteins or peptides — that alter the phenotype of a cell in some way.

Pharmacogenomic

A term that refers to the study of how genetics can alter responses to drugs.

Target occupancy

The interaction between a chemical probe or drug and its target, resulting in a biological response.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, L., Bunnage, M. Applications of chemogenomic library screening in drug discovery. Nat Rev Drug Discov 16, 285–296 (2017). https://doi.org/10.1038/nrd.2016.244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.244

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research