Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mismatch repair deficient colorectal cancer in the era of personalized treatment

Abstract

The molecular and genetic subtyping of cancer has allowed the emergence of individualized therapies. This approach could potentially deliver treatments that have both increased efficacy as well as reduced toxicity. A well-defined subtype of colorectal cancer (CRC) is characterized by a deficiency in the mismatch repair (MMR) pathway. MMR deficiency not only contributes to the pathogenesis of a large proportion of CRC, but also determines the response to many of the drugs that are frequently used to treat this disease. In this Review we describe the MMR deficient phenotype and discuss how a deficiency in this DNA repair process may impact on the management of CRC, including surgery, adjuvant chemotherapy and the choice of systemic agents for the palliation of advanced disease. We also discuss how the DNA repair defect in MMR deficient CRC could be exploited in the development of novel therapeutic strategies.

Key Points

  • Deficient MMR (dMMR) in colorectal cancer (CRC) occurs as a result of inherited or sporadic abnormalities

  • Phenotypic characteristics, such as proximal anatomical location, mucinous features, lymphocytic infiltration, and pushing margins help to identify dMMR tumors

  • The presence of dMMR in a tumor may be of relevance to the surgical management and systemic treatment of a patient

  • Preclinical investigations suggest that cancer cells with dMMR show resistance to 5-fluorouracil, but are sensitive to irinotecan and mitomycin C; clinical data corroborate these findings although further studies are required

  • Heterogeneity exists within the dMMR CRC subtype, which could be explained by the presence or absence of secondary mutations that occur as a consequence of the dMMR-associated mutator phenotype

  • dMMR and the mutations that arise as a result of this deficiency could be exploited as novel therapeutic targets

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of mismatches and the MMR pathway.
Figure 2: Genes mutated in dMMR cells and tumors.
Figure 3: The impact of dMMR on the management of colorectal cancer.
Figure 4: The futile cycling and direct damage signaling models.2,119
Figure 5: Novel strategies for the treatment of dMMR tumors.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2005. CA Cancer J. Clin. 55, 10–30 (2005).

    Article  PubMed  Google Scholar 

  2. Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Bhattacharyya, N. P., Skandalis, A., Ganesh, A., Groden, J. & Meuth, M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc. Natl Acad. Sci. USA 91, 6319–6323 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duval, A. & Hamelin, R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res. 62, 2447–2454 (2002).

    CAS  PubMed  Google Scholar 

  6. Jung, B. H. et al. Activin type 2 receptor restoration in MSI-H colon cancer suppresses growth and enhances migration with activin. Gastroenterology 132, 633–644 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Miquel, C. et al. Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability. Oncogene 26, 5919–5926 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Ionov, Y., Matsui, S. & Cowell, J. K. A role for p300/CREB binding protein genes in promoting cancer progression in colon cancer cell lines with microsatellite instability. Proc. Natl Acad. Sci. USA 10 1, 1273–1278 (2004).

    Article  CAS  Google Scholar 

  9. Loughrey, M. B. et al. Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer. Fam. Cancer 6, 301–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, N. G. et al. Identification of MARCKS, FLJ11383 and TAF1B as putative novel target genes in colorectal carcinomas with microsatellite instability. Oncogene 21, 5081–5087 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Ropero, S. et al. Transforming pathways unleashed by a HDAC2 mutation in human cancer. Oncogene 27, 4008–4012 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Kloor, M. et al. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res. 6 5, 6418–6424 (2005).

    Article  Google Scholar 

  13. Johannsdottir, J. T. et al. The effect of mismatch repair deficiency on tumourigenesis; microsatellite instability affecting genes containing short repeated sequences. Int. J. Oncol. 16, 133–139 (2000).

    CAS  PubMed  Google Scholar 

  14. Palomaki, G. E., McClain, M. R., Melillo, S., Hampel, H. L. & Thibodeau, S. N. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet. Med. 11, 42–65 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lynch, H. T., Lynch, J. F., Lynch, P. M. & Attard, T. Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam. Cancer 7, 27–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Imai, K. & Yamamoto, H. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 29, 673–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23, 609–618 (2005).

    CAS  PubMed  Google Scholar 

  18. Knudson, A. G. Hereditary cancer: two hits revisited. J. Cancer Res. Clin. Oncol. 122, 135–140 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Hampel, H. et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol. 26, 5783–5788 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tomlinson, I. P., Roylance, R. & Houlston, R. S. Two hits revisited again. J. Med. Genet. 38, 81–85 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suter, C. M., Martin, D. I. & Ward, R. L. Germline epimutation of MLH1 in individuals with multiple cancers. Nat. Genet. 36, 497–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Hitchins, M. P. et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N. Engl. J. Med. 356, 697–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Chan, T. L. et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet. 38, 1178–1183 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wimmer, K. & Etzler, J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum. Genet. 124, 105–122 (2008).

    Article  PubMed  Google Scholar 

  25. Scott, R. H. et al. Familial T-cell non-Hodgkin lymphoma caused by biallelic MSH2 mutations. J. Med. Genet. 44, e83 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alexander, J. et al. Histopathological identification of colon cancer with microsatellite instability. Am. J. Pathol. 158, 527–535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jass, J. R. HNPCC and sporadic MSI-H colorectal cancer: a review of the morphological similarities and differences. Fam. Cancer 3, 93–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Gatalica, Z. & Torlakovic, E. Pathology of the hereditary colorectal carcinoma. Fam. Cancer 7, 15–26 (2008).

    Article  PubMed  Google Scholar 

  29. Ogino, S. & Goel, A. Molecular classification and correlates in colorectal cancer. J. Mol. Diagn. 10, 13–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shia, J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J. Mol. Diagn. 10, 293–300 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, L. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part II. The utility of microsatellite instability testing. J. Mol. Diagn. 10, 301–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laghi, L., Bianchi, P. & Malesci, A. Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene 27, 6313–6321 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Umar, A. et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl Cancer Inst. 96, 261–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Boland, C. R., Koi, M., Chang, D. K. & Carethers, J. M. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch syndrome: from bench to bedside. Fam. Cancer 7, 41–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, S. et al. Prediction of germline mutations and cancer risk in the Lynch syndrome. JAMA 296, 1479–1487 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balmaña, J. et al. Prediction of MLH1 and MSH2 mutations in Lynch syndrome. JAMA 296, 1469–1478 (2006).

    Article  PubMed  Google Scholar 

  37. Barnetson, R. A. et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N. Engl. J. Med. 354, 2751–2763 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Julié, C. et al. Identification in daily practice of patients with Lynch syndrome (hereditary nonpolyposis colorectal cancer): revised Bethesda guidelines-based approach versus molecular screening. Am. J. Gastroenterol. 103, 2825–2835 (2008).

    Article  PubMed  Google Scholar 

  39. Dunlop, M. G. Guidance on gastrointestinal surveillance for hereditary non-polyposis colorectal cancer, familial adenomatous polypolis, juvenile polyposis, and Peutz-Jeghers syndrome. Gut 51 (Suppl. 5), V21–V27 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Van Duijvendijk, P. et al. Quality of life after total colectomy with ileorectal anastomosis or proctocolectomy and ileal pouch-anal anastomosis for familial adenomatous polyposis. Br. J. Surg. 87, 590–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Chau, I. et al. Neoadjuvant capecitabine and oxaliplatin followed by synchronous chemoradiation and total mesorectal excision in magnetic resonance imaging-defined poor-risk rectal cancer. J. Clin. Oncol. 24, 668–674 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Koopman, M. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 100, 266–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Braun, M. S. et al. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J. Clin. Oncol. 26, 2690–2698 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Jover, R. et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur. J. Cancer 45, 365–373 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. Ogino, S. et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58, 90–96 (2009).

    Article  PubMed  Google Scholar 

  46. Tol, J., Nagtegaal, I. D. & Punt, C. J. BRAF mutation in metastatic colorectal cancer. N. Engl. J. Med. 361, 98–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. French, A. J. et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin. Cancer Res. 14, 3408–3415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trautmann, K. et al. Chromosomal instability in microsatellite-unstable and stable colon cancer. Clin. Cancer Res. 12, 6379–6385 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Goel, A. et al. Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res. 63, 1608–1614 (2003).

    CAS  PubMed  Google Scholar 

  50. Walther, A., Houlston, R. & Tomlinson, I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 5 7, 941–950 (2008).

    Article  Google Scholar 

  51. Sinicrope, F. A. et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 131, 729–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Choi, S. W. et al. Genetic classification of colorectal cancer based on chromosomal loss and microsatellite instability predicts survival. Clin. Cancer Res. 8, 2311–2322 (2002).

    CAS  PubMed  Google Scholar 

  53. Nicum, S., Midgley, R. & Kerr, D. J. Chemotherapy for colorectal cancer. J. R. Soc. Med. 93, 416–419 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walko, C. M. & Lindley, C. Capecitabine: a review. Clin. Ther. 27, 23–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Meyers, M. et al. DNA mismatch repair-dependent response to fluoropyrimidine-generated damage. J. Biol. Chem. 280, 5516–5526 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Parker, W. B. & Cheng, Y. C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther. 4 8, 381–395 (1990).

    Article  Google Scholar 

  57. Aebi, S. et al. Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells. Clin. Cancer Res. 3, 1763–1767 (1997).

    CAS  PubMed  Google Scholar 

  58. Remick, S. C. et al. Phase I trial of 5-fluorouracil and dipyridamole administered by seventy-two-hour concurrent continuous infusion. Cancer Res. 50, 2667–2672 (1990).

    CAS  PubMed  Google Scholar 

  59. Carethers, J. M. et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117, 123–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Tokunaga, E., Oda, S., Fukushima, M., Maehara, Y. & Sugimachi, K. Differential growth inhibition by 5-fluorouracil in human colorectal carcinoma cell lines. Eur. J. Cancer 36, 1998–2006 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Meyers, M., Wagner, M. W., Hwang, H. S., Kinsella, T. J. & Boothman, D. A. Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res. 61, 5193–5201 (2001).

    CAS  PubMed  Google Scholar 

  62. Arnold, C. N., Goel, A. & Boland, C. R. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int. J. Cancer 106, 66–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Pocard, M., Bras-Gonçalves, R., Hamelin, R., Northover, J. & Poupon, M. F. Response to 5-fluorouracil of orthotopically xenografted human colon cancers with a microsatellite instability: influence of P53 status. Anticancer Res. 20, 85–90 (2000).

    CAS  PubMed  Google Scholar 

  64. Tajima, A., Hess, M. T., Cabrera, B. L., Kolodner, R. D. & Carethers, J. M. The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology 127, 1678–1684 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Gray, R. G. et al. QUASAR: A randomized study of adjuvant chemotherapy (CT) vs observation including 3238 colorectal cancer patients [abstract]. J. Clin. Oncol. 22, a3501 (2004).

    Article  Google Scholar 

  66. Sargent, D. J. et al. Confirmation of deficient mismatch repair (dMMR) as a predictive marker for lack of benefit from 5-FU based chemotherapy in stage II and III colon cancer (CC): A pooled molecular reanalysis of randomized chemotherapy trials [abstract]. J. Clin. Oncol. 26, a4008 (2008).

    Article  Google Scholar 

  67. Moran, R. G. & Scanlon, K. L. Schedule-dependent enhancement of the cytotoxicity of fluoropyrimidines to human carcinoma cells in the presence of folinic acid. Cancer Res. 51, 4618–4623 (1991).

    CAS  PubMed  Google Scholar 

  68. Stevenson, H. C., Green, I., Hamilton, J. M., Calabro, B. A. & Parkinson, D. R. Levamisole: known effects on the immune system, clinical results, and future applications to the treatment of cancer. J. Clin. Oncol. 9, 2052–2066 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Sany, J. Immunological treatment of rheumatoid arthritis. Clin. Exp. Rheumatol. 8 (Suppl. 5), 81–88 (1990).

    PubMed  Google Scholar 

  70. Tougeron, D. et al. Tumor-infiltrating lymphocytes in colorectal cancers with microsatellite instability are correlated with the number and spectrum of frameshift mutations. Mod. Pathol. 22, 1186–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Benson, A. B. 3rd. New approaches to assessing and treating early-stage colon and rectal cancers: cooperative group strategies for assessing optimal approaches in early-stage disease. Clin. Cancer Res. 13, 6913s–6920s (2007).

    Article  PubMed  Google Scholar 

  72. Des Guetz, G., Uzzan, B., Nicolas, P., Schischmanoff, O. & Morere, J. F. Microsatellite instability: a predictive marker in metastatic colorectal cancer? Target. Oncol. 4, 57–62 (2009).

    Article  PubMed  Google Scholar 

  73. Popat, S., Matakidou, A. & Houlston, R. S. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J. Clin. Oncol. 22, 529–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Sinicrope, F. A. et al. Thymidylate synthase expression in colon carcinomas with microsatellite instability. Clin. Cancer Res. 12, 2738–2744 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Popat, S., Wort, R. & Houlston, R. S. Inter-relationship between microsatellite instability, thymidylate synthase expression, and p53 status in colorectal cancer: implications for chemoresistance. BMC Cancer 6, 150 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Calascibetta, A. et al. Thymidylate synthase gene promoter polymorphisms are associated with TSmRNA expressions but not with microsatellite instability in colorectal cancer. Anticancer Res. 24, 3875–3880 (2004).

    CAS  PubMed  Google Scholar 

  77. Van Rijnsoever, M., Elsaleh, H., Joseph, D., McCaul, K. & Iacopetta, B. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin. Cancer Res. 9, 2898–2903 (2003).

    CAS  PubMed  Google Scholar 

  78. Shen, L. et al. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin. Cancer Res. 13, 6093–6098 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ogino, S. et al. Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J. Mol. Diagn. 9, 305–314 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Capdevila, J. et al. Oxaliplatin-based chemotherapy in the management of colorectal cancer. Expert Rev. Anticancer Ther. 8, 1223–1236 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Aebi, S. et al. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res. 56, 3087–3090 (1996).

    CAS  PubMed  Google Scholar 

  83. Drummond, J. T., Anthoney, A., Brown, R. & Modrich, P. Cisplatin and adriamycin resistance are associated with MutLα and mismatch repair deficiency in an ovarian tumor cell line. J. Biol. Chem. 271, 19645–19648 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Fink, D. et al. In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res. 57, 1841–1845 (1997).

    CAS  PubMed  Google Scholar 

  85. Champoux, J. J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Rodriguez, R. et al. Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation of MRE11. Clin. Cancer Res. 14, 5476–5483 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Fedier, A. et al. Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Int. J. Cancer 93, 571–576 (2001).

    Article  PubMed  Google Scholar 

  88. Takahashi, T. et al. Hypersensitivity in DNA mismatch repair-deficient colon carcinoma cells to DNA polymerase reaction inhibitors. Cancer Lett. 220, 85–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Papouli, E., Cejka, P. & Jiricny, J. Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells. Cancer Res. 6 4, 3391–3394 (2004).

    Article  Google Scholar 

  90. Jacob, S., Aguado, M., Fallik, D. & Praz, F. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res. 61, 6555–6562 (2001).

    CAS  PubMed  Google Scholar 

  91. Vilar, E. et al. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines. Br. J. Cancer 99, 1607–1612 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bras-Gonçalves, R. A. et al. Sensitivity to CPT-11 of xenografted human colorectal cancers as a function of microsatellite instability and p53 status. Br. J. Cancer 82, 913–923 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bertagnolli, M. M. et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol. 27, 1814–1821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fiumicino, S. et al. Sensitivity to DNA cross-linking chemotherapeutic agents in mismatch repair-defective cells in vitro and in xenografts. Int. J. Cancer 85, 590–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Aquilina, G., Ceccotti, S., Martinelli, S., Hampson, R. & Bignami, M. N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea sensitivity in mismatch repair-defective human cells. Cancer Res. 58, 135–141 (1998).

    CAS  PubMed  Google Scholar 

  97. Chong, G. et al. Capecitabine and mitomycin C as third-line therapy for patients with metastatic colorectal cancer resistant to fluorouracil and irinotecan. Br. J. Cancer 93, 510–514 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Loupakis, F. et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br. J. Cancer 101, 715–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rajagopalan, H. et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418, 934 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Wendum, D. et al. Mucinous colon carcinomas with microsatellite instability have a lower microvessel density and lower vascular endothelial growth factor expression. Virchows Arch. 442, 111–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Wynter, C. V. et al. Angiogenic factor VEGF is decreased in human colorectal neoplasms showing DNA microsatellite instability. J. Pathol. 189, 319–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Vilar, E. et al. Gene expression patterns in mismatch repair-deficient colorectal cancers highlight the potential therapeutic role of inhibitors of the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway. Clin. Cancer Res. 15, 2829–2839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bolderson, E., Scorah, J., Helleday, T., Smythe, C. & Meuth, M. ATM is required for the cellular response to thymidine induced replication fork stress. Hum. Mol. Genet. 13, 2937–2945 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Berry, S. E. et al. Selective radiosensitization of drug-resistant MutS homologue-2 (MSH2) mismatch repair-deficient cells by halogenated thymidine (dThd) analogues: Msh2 mediates dThd analogue DNA levels and the differential cytotoxicity and cell cycle effects of the dThd analogues and 6-thioguanine. Cancer Res. 60, 5773–5780 (2000).

    CAS  PubMed  Google Scholar 

  105. Kinsella, T. J. Coordination of DNA mismatch repair and base excision repair processing of chemotherapy and radiation damage for targeting resistant cancers. Clin. Cancer Res. 15, 1853–1859 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, L. & Gerson, S. L. Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway. Curr. Opin. Investig. Drugs 5, 623–627 (2004).

    CAS  PubMed  Google Scholar 

  107. Lord, C. J. & Ashworth, A. Targeted therapy for cancer using PARP inhibitors. Curr. Opin. Pharmacol. 8, 363–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Choi, M. Y., Lauwers, G. Y., Hur, C., Willett, C. G. & Chung, D. C. Microsatellite instability is frequently observed in rectal cancer and influenced by neoadjuvant chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 68, 1584 (2007).

    Article  PubMed  Google Scholar 

  109. Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Ashworth, A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol. 26, 3785–3790 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Edelmann, W. et al. The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res. 60, 803–807 (2000).

    CAS  PubMed  Google Scholar 

  112. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Martin, S. A. et al. Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol. Med. 1, 323–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vilar, E. et al. Preclinical testing of the PARP inhibitor ABT-888 in microsatellite instable colorectal cancer [abstract]. J. Clin. Oncol. 15, a11028 (2009).

    Article  Google Scholar 

  117. Swanton, C., Tomlinson, I. & Downward, J. Chromosomal instability, colorectal cancer and taxane resistance. Cell Cycle 5, 818–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Pazdur, R. et al. Phase II trial of docetaxel (Taxotere) in metastatic colorectal carcinoma. Ann. Oncol. 5, 468–470 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Swanton, C. & Caldas, C. Molecular classification of solid tumours: towards pathway-driven therapeutics. Br. J. Cancer 100, 1517–1522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Baird, R. D. & Kaye, S. B. Drug resistance reversal—are we getting closer? Eur. J. Cancer 39, 2450–2461 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Gifford, G., Paul, J., Vasey, P.A., Kaye, S.B. & Brown, R. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin. Cancer Res. 10, 4420–4426 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Hofseth, L. J. et al. The adaptive imbalance in base excision-repair enzymes generates microsatellite instability in chronic inflammation. J. Clin. Invest. 112, 1887–1894 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nakamura, H. et al. Human mismatch repair gene, MLH1, is transcriptionally repressed by the hypoxia-inducible transcription factors, DEC1 and DEC2. Oncogene 27, 4200–4209 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Svrcek, M. et al. Specific clinical and biological features characterize inflammatory bowel disease associated colorectal cancers showing microsatellite instability. J. Clin. Oncol. 25, 4231–4238 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell Res. 18, 85–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Alazzouzi, H. et al. Mechanisms of inactivation of the receptor tyrosine kinase EPHB2 in colorectal tumors. Cancer Res. 65, 10170–10173 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Ollikainen, M. et al. Patterns of PIK3CA alterations in familial colorectal and endometrial carcinoma. Int. J. Cancer 121, 915–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Karran, P. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 22, 1931–1937 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Kim, J. C. et al. Evaluation of novel histone deacetylase inhibitors as therapeutic agents for colorectal adenocarcinomas compared to established regimens with the histoculture drug response assay. Int. J. Colorectal Dis. 24, 209–218 (2009).

    Article  PubMed  Google Scholar 

  132. Senter, L. et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 135, 419–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Lynch, H. T. et al. Phenotypic and genotypic heterogeneity in the Lynch syndrome: diagnostic, surveillance and management implications. Eur. J. Hum. Genet. 14, 390–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Kim, G. P. et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J. Clin. Oncol. 25, 767–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Jover, R. et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur. J. Cancer 45, 365–373 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Ribic, C. M. et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 349, 247–257 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tejpar, S. et al. Microsatellite instability (MSI) in stage II and III colon cancer treated with 5FU-LV or 5FU-LV and irinotecan (PETACC 3-EORTC 40993-SAKK 60/00 trial) [abstract]. J. Clin. Oncol. 27, a4008 (2009).

    Article  Google Scholar 

  138. Fallik, D. et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 63, 5738–5744 (2003).

    CAS  PubMed  Google Scholar 

  139. Charara, M. et al. Microsatellite status and cell cycle associated markers in rectal cancer patients undergoing a combined regimen of 5-FU and CPT-11 chemotherapy and radiotherapy. Anticancer Res. 24, 3161–3167 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge NHS funding to the NIHR Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Ashworth.

Ethics declarations

Competing interests

A. Ashworth and C. J. Lord report that they may benefit financially from the development of PARP inhibitors through patents held with Kudos-Astra Zeneca, and through the Institute of Cancer Research 'Rewards to Inventors' scheme.

A. Ashworth, C. J. Lord and S. A. Martin have a patent pending on the use of methotrexate in mismatch repair-deficient cancers.

D. Cunningham has received a grant from The Royal Marsden NHS Foundation and has also worked as a consultant for this Trust.

M. Hewish declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hewish, M., Lord, C., Martin, S. et al. Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat Rev Clin Oncol 7, 197–208 (2010). https://doi.org/10.1038/nrclinonc.2010.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing