Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines

Key Points

  • Many attempts at cancer immunotherapy have been conducted; however, apart from melanoma, in which impressive clinical responses have been noted in a small minority of patients, the overall results have been disappointing.

  • Therapeutic vaccines require induction of robust cell-mediated immunity, capable of attacking and eliminating abnormal antigen-bearing cells. This calls for close collaboration between cells of the innate and adaptive immune systems.

  • A popular approach to therapeutic cancer vaccination has been vaccination with exact major histocompatibility complex (MHC)-binding peptides derived from the sequence of tumour-associated antigens. However, this approach is far from optimal because it can lead to immunological tolerance of the immunizing antigens.

  • Peptide vaccines have been improved by the inclusion of agonists of the Toll-like receptors, the expression of epitopes to induce by cytotoxic T cells (Tc) and T helper cells within the same peptide and an increase in the length of the peptide used.

  • Synthetic long peptide (SLP) vaccines have evolved as a simple solution for the many problems that have surfaced with minimal Tc peptide vaccines. SLP are not able to bind directly to MHC class I and their presentation to Tc therefore indicates that they have to be taken up and processed before they are presented. As a result SLP can induce a more effective immune response.

  • SLP have recently entered phase I/II clinical trials in patients with premalignant and malignant human papillomavirus-induced cancers with promising results.

Abstract

This Review deals with recent progress in the immunotherapy of established (pre)malignant disease of viral or non-viral origin by synthetic vaccines capable of inducing robust T-cell responses. The most attractive vaccine compounds are synthetic long peptides (SLP) corresponding to the sequence of tumour viral antigens or tumour-associated non-viral antigens. Crucial to induction of therapeutic T-cell immunity is the capacity of SLP to deliver specific cargo to professional antigen-presenting cells (dendritic cells (DC)). Proper DC activation then induces the therapeutic CD4+ and CD8+ T-cell responses that are associated with regression of established (pre)malignant lesions, including those induced by high-risk human papilloma virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different pharmacokinetics explains the superior immunogenicity of synthetic long peptides vaccines over minimal peptide vaccines.
Figure 2: Maximal use of immunogenic potential with synthetic long peptides but not with minimal peptides.

Similar content being viewed by others

References

  1. Rosenberg, S. A. & Dudley, M. E. Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc. Natl Acad. Sci. USA 101 (Suppl. 2), 14639–14645 (2004).

    CAS  PubMed  Google Scholar 

  2. Cavallo, F., Offringa, R., van der Burg, S. H., Forni, G. & Melief, C. J. Vaccination for treatment and prevention of cancer in animal models. Adv. Immunol. 90, 175–213 (2006).

    CAS  PubMed  Google Scholar 

  3. Bijker, M. S., Melief, C. J., Offringa, R. & van der Burg, S. H. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev. Vaccines 6, 591–603 (2007).

    CAS  Google Scholar 

  4. van der Burg, S. H., Bijker, M. S., Welters, M. J., Offringa, R. & Melief, C. J. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv. Drug Deliv. Rev. 58, 916–930 (2006).

    CAS  PubMed  Google Scholar 

  5. Schuurhuis, D. H. et al. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J. Immunol. 176, 4573–4580 (2006).

    CAS  PubMed  Google Scholar 

  6. Zwaveling, S. et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. 169, 350–358 (2002). The first head-to-head comparison in mice between minimal MHC class I binding peptide vaccine and a long peptide vaccine, showing that the latter induces an effective anti-tumour response with the capacity to eradicate established tumours in mice.

    CAS  PubMed  Google Scholar 

  7. Vambutas, A. et al. Therapeutic vaccination with papillomavirus E6 and E7 long peptides results in the control of both established virus-induced lesions and latently infected sites in a pre-clinical cottontail rabbit papillomavirus model. Vaccine 23, 5271–5280 (2005). This paper shows that an immune response induced by vaccination with a pool of long peptides is able to eradicate established virus-induced premalignant epithelial lesions growing in their natural context in rabbits.

    CAS  PubMed  Google Scholar 

  8. Melief, C. J. et al. Long peptide vaccine-induced migration of HPV16-specific type 1 and 2 T cells into the lesions of VIN III patients associated with complete clinical responses. Cancer Immun. 7, 20 (2007).

    Google Scholar 

  9. Kenter, G. et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high risk HPV16 in end stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin. Cancer Res. 14, 169–177 (2008).

    CAS  PubMed  Google Scholar 

  10. Welters, M. J. et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by an HPV16 E6 and E7 long-peptide vaccine. Clin. Cancer Res. 14, 178–187 (2008). References 9 and 10 show that the concept of vaccination with a set of long overlapping peptides spanning the full length of the two oncogenic proteins E6 and E7 of high-risk HPV16 successfully induces robust E6/E7-specific T-cell responses to multiple CD4 and CD8 epitopes of HPV16 E6 and E7 in patients with cervical cancer.

    CAS  PubMed  Google Scholar 

  11. Harrop, R., John, J. & Carroll, M. W. Recombinant viral vectors: cancer vaccines. Adv. Drug Deliv. Rev. 58, 931–947 (2006).

    CAS  PubMed  Google Scholar 

  12. Schlom, J., Arlen, P. M. & Gulley, J. L. Cancer vaccines: moving beyond current paradigms. Clin. Cancer Res. 13, 3776–3782 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanodia, S., Da Silva, D. M. & Kast, W. M. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int. J. Cancer 122, 247–259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gudmundsdotter, L. et al. Therapeutic immunization for HIV. Springer Semin. Immunopathol. 28, 221–230 (2006).

    CAS  PubMed  Google Scholar 

  15. Pol, S. & Michel, M. L. Therapeutic vaccination in chronic hepatitis B virus carriers. Expert Rev. Vaccines 5, 707–716 (2006).

    CAS  PubMed  Google Scholar 

  16. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J. & Melief, C. J. Dendritic cell immunotherapy: mapping the way. Nature Med. 10, 475–480 (2004).

    CAS  PubMed  Google Scholar 

  17. Gilboa, E. DC-based cancer vaccines. J. Clin. Invest. 117, 1195–1203 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tacken, P. J., de Vries, I. J., Torensma, R. & Figdor, C. G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nature Rev. Immunol. 7, 790–802 (2007).

    CAS  Google Scholar 

  19. Ueno, H. et al. Dendritic cell subsets in health and disease. Immunol. Rev. 219, 118–142 (2007).

    CAS  PubMed  Google Scholar 

  20. Tsen, S. W., Paik, A. H., Hung., C. F. & Wu, T. C. Enhancing DNA vaccine potency by modifying the properties of antigen-presenting cells. Expert Rev. Vaccines 6, 227–239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rice, J., Ottensmeier, C. H. & Stevenson, F. K. DNA vaccines: precision tools for activating effective immunity against cancer. Nature Rev. Cancer 8, 108–120 (2008).

    CAS  Google Scholar 

  22. Corradin, G., Spertini, F. & Verdini, A. Medicinal application of long synthetic peptide technology. Expert Opin. Biol. Ther. 4, 1629–1639 (2004).

    CAS  PubMed  Google Scholar 

  23. Moudgil, K. D. & Sercarz, E. E. Dominant determinants in hen eggwhite lysozyme correspond to the cryptic determinants within its self-homologue, mouse lysozyme: implications in shaping of the T cell repertoire and autoimmunity. J. Exp. Med. 178, 2131–2138 (1993).

    CAS  PubMed  Google Scholar 

  24. Pickup, D. J. Understanding orthopoxvirus interference with host immune responses to inform novel vaccine design. Expert Rev. Vaccines 6, 87–95 (2007).

    CAS  PubMed  Google Scholar 

  25. Smith, G. L., Symons, J. A., Khanna, A., Vanderplasschen, A. & Alcami, A. Vaccinia virus immune evasion. Immunol. Rev. 159, 137–154 (1997).

    CAS  PubMed  Google Scholar 

  26. Aichele, P., Hengartner, H., Zinkernagel, R. M. & Schulz, M. Antiviral cytotoxic T cell response induced by in vivo priming with a free synthetic peptide. J. Exp. Med. 171, 1815–1820 (1990).

    CAS  PubMed  Google Scholar 

  27. Schulz, M., Zinkernagel, R. M. & Hengartner, H. Peptide-induced antiviral protection by cytotoxic T cells. Proc. Natl. Acad. Sci. USA 88, 991–993 (1991). The first report on the use of peptides as vaccines to induce effective antiviral Tc immunity in mice. In the same year53 it was reported that the peptide that was used also contained a helper T-cell epitope.

    CAS  PubMed  Google Scholar 

  28. Knutson, K. L. & Disis, M. L. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother. 54, 721–728 (2005).

    CAS  PubMed  Google Scholar 

  29. Kast, W. M. et al. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc. Natl. Acad. Sci. USA 88, 2283–2287 (1991).

    CAS  PubMed  Google Scholar 

  30. Feltkamp, M. C. et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16- transformed cells. Eur. J. Immunol. 23, 2242–2249 (1993). First report on the use of a successful peptide vaccine that was able to prevent the outgrowth of transplanted tumour cells in mice.

    CAS  PubMed  Google Scholar 

  31. Noguchi, Y., Chen, Y. T. & Old, L. J. A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc. Natl Acad. Sci. USA 91, 3171–3175 (1994).

    CAS  PubMed  Google Scholar 

  32. Mandelboim, O. et al. Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nature Med. 1, 1179–1183 (1995).

    CAS  PubMed  Google Scholar 

  33. Toes, R. E., Blom, R. J., Offringa, R., Kast, W. M. & Melief, C. J. Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J. Immunol. 156, 3911–3918 (1996).

    CAS  PubMed  Google Scholar 

  34. Toes, R. E., Offringa, R., Blom, R. J., Melief, C. J. & Kast, W. M. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc. Natl Acad. Sci. USA 93, 7855–7860 (1996).

    CAS  PubMed  Google Scholar 

  35. Bijker, M. S. et al. CD8+ CTL priming by exact peptide epitopes in incomplete Freund's adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J. Immunol. 179, 5033–5040 (2007). This paper shows that the injection of vaccines consisting of highly immunogenic minimal MHC class I binding peptide vaccines mixed with IFA results in a transient effector Tc response but fails to induce Tc memory in mice.

    CAS  PubMed  Google Scholar 

  36. Toes, R. E. et al. Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells. J. Immunol. 160, 4449–4456 (1998).

    CAS  PubMed  Google Scholar 

  37. Bijker, M. S. et al. Superior induction of anti-tumour CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol. 38, 1–10 (2008). A mouse study demonstrating that in vivo long peptides are preferentially presented by professional APCs whereas minimal peptides are also presented by B cells and T cells. B-cell-knockout mice reveal that B cells have a key role in the priming of T cells when minimal peptides but not when long peptides are used.

    Google Scholar 

  38. Melief, C. J. M. et al. Strategies for immunotherapy of cancer. Adv. Immunol. 75, 235–281 (2000).

    CAS  PubMed  Google Scholar 

  39. Heath, W. R. & Carbone, F. R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    CAS  Google Scholar 

  40. Chen, W., Yewdell, J. W., Levine, R. L. & Bennink, J. R. Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. J. Exp. Med. 189, 1757–1764 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Feltkamp, M. C., Vierboom, M. P., Kast, W. M. & Melief, C. J. Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. Mol. Immunol. 31, 1391–1401 (1994).

    CAS  PubMed  Google Scholar 

  42. van der Burg, S. H., Visseren, M. J., Brandt, R. M., Kast, W. M. & Melief, C. J. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. 156, 3308–3314 (1996).

    CAS  PubMed  Google Scholar 

  43. Valmori, D. et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J. Immunol. 160, 1750–1758 (1998).

    CAS  PubMed  Google Scholar 

  44. Tsuboi, A. et al. Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer Immunol. Immunother. 51, 614–620 (2002).

    CAS  PubMed  Google Scholar 

  45. Sette, A. et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592 (1994).

    CAS  PubMed  Google Scholar 

  46. Rivoltini, L. et al. A superagonist variant of peptide MART1/Melan A27–35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res. 59, 301–306 (1999).

    CAS  PubMed  Google Scholar 

  47. Lee, P. et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J. Clin. Oncol. 19, 3836–3847 (2001).

    CAS  PubMed  Google Scholar 

  48. Dyall, R. et al. Heteroclitic immunization induces tumor immunity. J. Exp. Med. 188, 1553–1561 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lienard, D. et al. Ex vivo detectable activation of Melan-A-specific T cells correlating with inflammatory skin reactions in melanoma patients vaccinated with peptides in IFA. Cancer Immun. 4, 4 (2004).

    PubMed  Google Scholar 

  50. Weber, J. Peptide vaccines for cancer. Cancer Invest. 20, 208–221 (2002).

    CAS  PubMed  Google Scholar 

  51. Wang, F. et al. On defining the rules for interactions between the T cell receptor and its ligand: a critical role for a specific amino acid residue of the T cell receptor β chain. Proc. Natl Acad. Sci. USA 95, 5217–5222 (1998).

    CAS  PubMed  Google Scholar 

  52. Kalergis, A. M. et al. Single amino acid replacements in an antigenic peptide are sufficient to alter the TCR V beta repertoire of the responding CD8+ cytotoxic lymphocyte population. J. Immunol. 162, 7263–7270 (1999).

    CAS  PubMed  Google Scholar 

  53. Fayolle, C., Deriaud, E. & Leclerc, C. In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J. Immunol. 147, 4069–4073 (1991).

    CAS  PubMed  Google Scholar 

  54. Bennett, S. R. M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    CAS  PubMed  Google Scholar 

  55. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    CAS  PubMed  Google Scholar 

  56. Schuurhuis, D. H. et al. Immature dendritic cells acquire CD8+ cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J. Exp. Med. 192, 145–150 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Valmori, D. et al. Induction of a cytotoxic T cell response by co-injection of a T helper peptide and a cytotoxic T lymphocyte peptide in incomplete Freund's adjuvant (IFA): further enhancement by pre-injection of IFA alone. Eur. J. Immunol. 24, 1458–1462 (1994).

    CAS  PubMed  Google Scholar 

  58. Widmann, C., Romero, P., Maryanski, J. L., Corradin, G. & Valmori, D. T helper epitopes enhance the cytotoxic response of mice immunized with MHC class I-restricted malaria peptides. J. Immunol. Methods 155, 95–99 (1992).

    CAS  PubMed  Google Scholar 

  59. Scheibenbogen, C. et al. Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides. Int. J. Cancer 104, 188–194 (2003).

    CAS  PubMed  Google Scholar 

  60. Ossendorp, F., Mengede, E., Camps, M., Filius, R. & Melief, C. J. M. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp.Med. 187, 1–10 (1998).

    Google Scholar 

  61. Casares, N. et al. Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. Eur. J. Immunol. 31, 1780–1789 (2001).

    CAS  PubMed  Google Scholar 

  62. Utermohlen, O. et al. Simian virus 40 large-T-antigen-specific rejection of mKSA tumor cells in BALB/c mice is critically dependent on both strictly tumor-associated, tumor-specific CD8+ cytotoxic T lymphocytes and CD4+ T helper cells. J. Virol. 75, 10593–10602 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hossain, A., Zheng, C. L., Kukita, A. & Kohashi, O. Balance of Th1/Th2 cytokines associated with the preventive effect of incomplete Freund's adjuvant on the development of adjuvant arthritis in LEW rats. J. Autoimmun. 17, 289–295 (2001).

    CAS  PubMed  Google Scholar 

  64. Shibaki, A. & Katz, S. I. Induction of skewed Th1/Th2 T-cell differentiation via subcutaneous immunization with Freund's adjuvant. Exp. Dermatol. 11, 126–134 (2002).

    CAS  PubMed  Google Scholar 

  65. Gerard, C. M. et al. Therapeutic potential of protein and adjuvant vaccinations on tumour growth. Vaccine 19, 2583–2589 (2001).

    CAS  PubMed  Google Scholar 

  66. Fujimoto, C., Nakagawa, Y., Ohara, K. & Takahashi, H. Polyriboinosinic polyribocytidylic acid [poly(I:C)]/TLR3 signaling allows class I processing of exogenous protein and induction of HIV-specific CD8+ cytotoxic T lymphocytes. Int. Immunol. 16, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  67. Schwarz, K. et al. Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur. J. Immunol. 33, 1465–1470 (2003).

    CAS  PubMed  Google Scholar 

  68. Ahonen, C. L. et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med. 199, 775–784 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wille-Reece, U., Wu, C. Y., Flynn, B. J., Kedl, R. M. & Seder, R. A. Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J. Immunol. 174, 7676–7683 (2005).

    CAS  Google Scholar 

  70. Rechtsteiner, G., Warger, T., Osterloh, P., Schild, H. & Radsak, M. P. Cutting edge: priming of CTL by transcutaneous peptide immunization with imiquimod. J. Immunol. 174, 2476–2480 (2005).

    CAS  PubMed  Google Scholar 

  71. Welters, M. J. et al. Multiple CD4 and CD8 T-cell activation parameters predict vaccine efficacy in vivo mediated by individual DC-activating agonists. Vaccine 25, 1379–1389 (2007).

    CAS  PubMed  Google Scholar 

  72. Speiser, D. E. et al. In vivo activation of melanoma-specific CD8+ T cells by endogenous tumor antigen and peptide vaccines. A comparison to virus-specific T cells. Eur. J. Immunol. 32, 731–741 (2002).

    CAS  PubMed  Google Scholar 

  73. Monsurro, V. et al. Active-specific immunization against melanoma: is the problem at the receiving end? Semin. Cancer Biol. 13, 473–480 (2003).

    CAS  PubMed  Google Scholar 

  74. Speiser, D. E. et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. 115, 739–746 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Diehl, L. et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nature Med. 5, 774–779 (1999).

    CAS  PubMed  Google Scholar 

  76. den Boer, A. T. et al. Longevity of antigen presentation and activation status of APC are decisive factors in the balance between CTL immunity versus tolerance. J. Immunol. 167, 2522–2528 (2001).

    CAS  PubMed  Google Scholar 

  77. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nature Immunol. 6, 769–776 (2005).

    CAS  Google Scholar 

  78. Shirai, M. et al. Helper-cytotoxic T lymphocyte (CTL) determinant linkage required for priming of anti-HIV CD8+ CTL in vivo with peptide vaccine constructs. J. Immunol. 152, 549–556 (1994). This mouse study not only shows that the inclusion of helper T cell epitopes in minimal MHC class I binding peptide vaccines results in a stronger Tc response but also that the strongest responses are obtained when the helper T-cell peptide and Tc peptide are physically linked.

    CAS  PubMed  Google Scholar 

  79. Hiranuma, K. et al. Helper T cell determinant peptide contributes to induction of cellular immune responses by peptide vaccines against hepatitis C virus. J. Gen. Virol. 80, 187–193 (1999).

    CAS  PubMed  Google Scholar 

  80. Maurer, T. et al. CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur. J. Immunol. 32, 2356–2364 (2002).

    CAS  PubMed  Google Scholar 

  81. Khan, S. et al. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J. Biol. Chem. 282, 21145–21159 (2007).

    CAS  PubMed  Google Scholar 

  82. Jackson, D. C. et al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl Acad. Sci. USA 101, 15440–15445 (2004). A mouse study showing that completely synthetic vaccines composed of a TLR ligand, a helper T-cell epitope and a Tc epitope protect against viral infections and mediate prophylactic and therapeutic activity against tumours.

    CAS  PubMed  Google Scholar 

  83. Tighe, H. et al. Conjugation of protein to immunostimulatory DNA results in a rapid, long-lasting and potent induction of cell-mediated and humoral immunity. Eur. J. Immunol. 30, 1939–1947 (2000).

    CAS  PubMed  Google Scholar 

  84. Borges, E., Wiesmuller, K. H., Jung, G. & Walden, P. Efficacy of synthetic vaccines in the induction of cytotoxic T lymphocytes. Comparison of the costimulating support provided by helper T cells and lipoamino acid. J. Immunol. Methods 173, 253–263 (1994).

    CAS  PubMed  Google Scholar 

  85. Deres, K., Schild, H., Wiesmuller, K. H., Jung, G. & Rammensee, H. G. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 342, 561–564 (1989).

    CAS  PubMed  Google Scholar 

  86. Heit, A. et al. Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. J. Immunol. 174, 4373–4380 (2005).

    CAS  PubMed  Google Scholar 

  87. Roth, A. et al. Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct. Br. J. Cancer 92, 1421–1429 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Daftarian, P. et al. Novel conjugates of epitope fusion peptides with CpG-ODN display enhanced immunogenicity and HIV recognition. Vaccine 23, 3453–3468 (2005).

    CAS  PubMed  Google Scholar 

  89. Kast, W. M., Brandt, R. M. & Melief, C. J. Strict peptide length is not required for the induction of cytotoxic T lymphocyte-mediated antiviral protection by peptide vaccination. Eur. J. Immunol. 23, 1189–1192 (1993).

    CAS  PubMed  Google Scholar 

  90. Gao, X. M., Zheng, B., Liew, F. Y., Brett, S. & Tite, J. Priming of influenza virus-specific cytotoxic T lymphocytes vivo by short synthetic peptides. J. Immunol. 147, 3268–3273 (1991).

    CAS  PubMed  Google Scholar 

  91. Minev, B. R., McFarland, B. J., Spiess, P. J., Rosenberg, S. A. & Restifo, N. P. Insertion signal sequence fused to minimal peptides elicits specific CD8+ T-cell responses and prolongs survival of thymoma-bearing mice. Cancer Res. 54, 4155–4161 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Reinholdsson-Ljunggren, G., Ramqvist, T., Ahrlund-Richter, L. & Dalianis, T. Immunization against polyoma tumors with synthetic peptides derived from the sequences of middle- and large-T antigens. Int. J. Cancer 50, 142–146 (1992).

    CAS  PubMed  Google Scholar 

  93. Falo, L. D. Jr, Colarusso, L. J., Benacerraf, B. & Rock, K. L. Serum proteases alter the antigenicity of peptides presented by class I major histocompatibility complex molecules. Proc. Natl Acad. Sci. USA 89, 8347–8350 (1992).

    CAS  PubMed  Google Scholar 

  94. Amoscato, A. A., Prenovitz, D. A. & Lotze, M. T. Rapid extracellular degradation of synthetic class I peptides by human dendritic cells. J. Immunol. 161, 4023–4032 (1998).

    CAS  PubMed  Google Scholar 

  95. Larsen, S. L., Pedersen, L. O., Buus, S. & Stryhn, A. T cell responses affected by aminopeptidase N. (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides. J. Exp. Med. 184, 183–189 (1996).

    CAS  PubMed  Google Scholar 

  96. Bennett, S. R., Carbone, F. R., Toy, T., Miller, J. F. & Heath, W. R. B cells directly tolerize CD8+ T cells. J. Exp. Med. 188, 1977–1983 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Suhrbier, A. et al. Peptide epitope induced apoptosis of human cytotoxic T lymphocytes. Implications for peripheral T cell deletion and peptide vaccination. J. Immunol. 150, 2169–2178 (1993).

    CAS  PubMed  Google Scholar 

  98. Su, M. W., Walden, P. R., Golan, D. B. & Eisen, H. N. Cognate peptide-induced destruction of CD8+ cytotoxic T lymphocytes is due to fratricide. J. Immunol. 151, 658–667 (1993).

    CAS  PubMed  Google Scholar 

  99. Lefrancois, L., Marzo, A. & Williams, K. Sustained response initiation is required for T cell clonal expansion but not for effector or memory development in vivo. J. Immunol. 171, 2832–2839 (2003).

    CAS  PubMed  Google Scholar 

  100. Obst, R. et al. Sustained antigen presentation can promote an immunogenic T cell response, like dendritic cell activation. Proc. Natl Acad. Sci. USA 104, 15460–15465 (2007).

    CAS  PubMed  Google Scholar 

  101. Tindle, R. W., Fernando, G. J. P., Sterling, J. C. & Frazer, I. H. A “public” T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc. Natl. Acad. Sci. USA 88, 5887–5591 (1991).

    CAS  PubMed  Google Scholar 

  102. Takahashi, H., Germain, R. N., Moss, B. & Berzofsky, J. A. An immunodominant class I-restricted cytotoxic T lymphocyte determinant of human immunodeficiency virus type 1 induces CD4 class II-restricted help for itself. J. Exp. Med. 171, 571–576 (1990).

    CAS  PubMed  Google Scholar 

  103. Ou, D., Jonsen, L. A., Metzger, D. L. & Tingle, A. J. CD4+ and CD8+ T-cell clones from congenital rubella syndrome patients with IDDM recognize overlapping GAD65 protein epitopes. Implications for HLA class I and II allelic linkage to disease susceptibility. Hum. Immunol. 60, 652–664 (1999).

    CAS  PubMed  Google Scholar 

  104. Zeng, G. et al. Generation of NY-ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Res. 62, 3630–3635 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Knutson, K. L., Schiffman, K. & Disis, M. L. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest. 107, 477–484 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lopez, J. A. et al. A synthetic malaria vaccine elicits a potent CD8+ and CD4+ T lymphocyte immune response in humans. Implications for vaccination strategies. Eur. J. Immunol. 31, 1989–1998 (2001).

    CAS  PubMed  Google Scholar 

  107. Lauwen, M. M. et al. Self-tolerance does not restrict the CD4+ T-helper response against the p53 tumor antigen. Cancer Res. 68, 893–900 (2008).

    CAS  PubMed  Google Scholar 

  108. Zwaveling, S. et al. Antitumor efficacy of wild-type p53-specific CD4+ T-helper cells. Cancer Res. 62, 6187–6193 (2002).

    CAS  PubMed  Google Scholar 

  109. Offringa, R., van der Burg, S. H., Ossendorp, F., Toes, R. E. & Melief, C. J. Design and evaluation of antigen-specific vaccination strategies against cancer. Curr. Opin. Immunol. 12, 576–582 (2000).

    CAS  PubMed  Google Scholar 

  110. Raju, R., Diethelm-Okita, B., Okita, D. & Conti-Fine, B. M. Epitope repertoire of human CD4+ lines propagated with tetanus toxoid or with synthetic tetanus toxin sequences. J. Autoimmun. 9, 79–88 (1996).

    CAS  PubMed  Google Scholar 

  111. Nowak, A. K., Lake, R. A. & Robinson, B. W. Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv. Drug Deliv. Rev. 58, 975–990 (2006).

    CAS  PubMed  Google Scholar 

  112. Bae, S. H. et al. Therapeutic synergy of human papillomavirus E7 subunit vaccines plus cisplatin in an animal tumor model: causal involvement of increased sensitivity of cisplatin-treated tumors to CTL-mediated killing in therapeutic synergy. Clin. Cancer Res. 13, 341–349 (2007).

    CAS  PubMed  Google Scholar 

  113. Disis, M. L. et al. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J. Clin. Oncol. 20, 2624–2632 (2002).

    CAS  PubMed  Google Scholar 

  114. Audran, R. et al. Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect. Immun. 73, 8017–8026 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Villard, V. et al. Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif. PLoS ONE 2, e645 (2007). The studies reported in references 114 and 115 showed the capacity of long synthetic peptide vaccines against malaria to induce strong specific T-cell responses as well as neutralizing cross-reactive antibodies.

    PubMed  PubMed Central  Google Scholar 

  116. Nijman, H. W. et al. Identification of peptide sequences that potentially trigger HLA-A2.1- restricted cytotoxic T lymphocytes. Eur. J. Immunol. 23, 1215–1219 (1993).

    CAS  PubMed  Google Scholar 

  117. De Bruijn, M. L. et al. Peptide loading of empty major histocompatibility complex molecules on RMA-S cells allows the induction of primary cytotoxic T lymphocyte responses. Eur. J. Immunol. 21, 2963–2970 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have received funding for their studies from the Dutch Cancer Society (UL 2003-2817), Integrated project FP 6 “CANCERIMMUNOTHERAPY”, Contract No. 518234, Network of Excellence DC-Thera, contract LSHB-CT-2004-512074, and ISA Pharmaceuticals B.V., Bilthoven, the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cornelis J.M. Melief or Sjoerd H. van der Burg.

Ethics declarations

Competing interests

The LUMC, Leiden, the Netherlands hold a patent on long peptide vaccines (US 7202034) on which S.H.v.d.B. and C.J.M.M. are named as inventors, solely to indicate these facts. C.J.M.M. is partly employed as of 20 January 2008 as Chief Scientific Officer by ISA Pharmaceuticals, Bilthoven, the Netherlands, the company which exploits this long peptide vaccine patent and has co–funded the clinical trials with the HPV16 SLP vaccine in the Leiden University Medical Center.

Related links

Related links

DATABASES

National cancer institute

breast cancer

melanoma

non-small-cell lung cancer

ovarian cancer

National cancer institute Drug Dictionary

CpG 7909

IFA

FURTHER INFORMATION

Sjoerd H. van der Burg's homepage

Glossary

Dendritic cells

Specialized antigen-presenting cells, the immunogenicity of which leads to the induction of antigen-specific immune responses. Dendritic cells have been used in numerous clinical trials to induce anti-tumour immune responses in cancer patients.

CD4+ T-helper cells

T cells that express the CD4 surface glycoprotein and produce cytokines, particularly IL-2, that are necessary for the expression of effector function by other cells in the immune system, especially CD8+ T cells.

CD8+ cytotoxic T cells

A T cell bearing the CD8 cell-surface glycoprotein, which recognizes MHC class I molecules on target cells and is involved in killing these cells.

Tolerance

The process that ensures that B- and T-cell repertoires are biased against self-reactivity, reducing the likelihood of autoimmunity.

Toll-like receptor

(TLR). A family of receptors that recognize conserved products unique to microorganisms (such as lipopolysaccharide), which are known as pathogen-associated molecular patterns (PAMPs). TLR-mediated events signal to the host that a microbial pathogen is present.

Antigen-presenting cells

(APC). These process antigen and present antigen fragments to other cells of the immune system (cross-presentation) to initiate an immune response. Dendritic cells are the most potent APC.

ELISPOT

An antibody-capture-based method for enumerating specific T cells (CD4+ and CD8+) that secrete a particular cytokine (often IFNγ).

Regulatory T cells

A subset of CD4+CD25+FOXP3+ T cells that control the responses of other T cells and tolerance to self antigens. They can suppress the activation of other T cells in a contact-dependent manner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melief, C., van der Burg, S. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8, 351–360 (2008). https://doi.org/10.1038/nrc2373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing