Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A two-component 'double-click' approach to peptide stapling

Abstract

Peptide cyclization is a useful strategy for the stabilization of short flexible peptides into well-defined bioactive conformations, thereby enhancing their ability to interact with proteins and other important biomolecules. We present an optimized procedure for the stabilization of linear diazido peptides in an α-helical conformation upon reaction with dialkynyl linkers under Cu(I) catalysis. As this procedure generates side chain–cyclized peptides bearing a bis-triazole linkage, it is referred to as 'double-click' stapling. Double-click stapling can enhance the binding affinity, proteolytic stability and cellular activity of a peptide inhibitor. A distinguishing feature of double-click stapling is the efficiency with which peptides bearing different staple linkages can be synthesized, thus allowing for modular control over peptide bioactivity. This protocol describes the double-click reaction between a 1,3-dialkynylbenzene linker and peptides that contain azidoornithine. Subsequent peptide purification and confirmation steps are also described. The entire double-click stapling protocol can be completed in 48 h, including two overnight lyophilization steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double-click stapling is a two-component reaction, in which the peptide and linker are separate moieties.
Figure 2: Dialkynyl staple linkers bearing different functionalities.
Figure 3: The experimental setup for double-click stapling (shown at Step 11).
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8: HPLC chromatographs of unstapled starting peptides and corresponding crude reaction mixtures for stapled peptides 1 and 2.
Figure 9: IR spectra of stapled peptide 2 (black), unstapled peptide 2 (red) and wild-type p5317-29 (blue).
Figure 10: Mass chromatograph of stapled peptide 1 showing the isotope peaks for [M+2H]2+ separated by 0.5 AMU, corresponding to peptides containing different numbers of the 13C isotope.

Similar content being viewed by others

References

  1. Azzarito, V., Long, K., Murphy, N.S. & Wilson, A.J. Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Nat. Chem. 5, 161–173 (2013).

    Article  CAS  Google Scholar 

  2. Walensky, L.D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  Google Scholar 

  3. Blackwell, H.E. & Grubbs, R.H. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. 37, 3281–3284 (1998).

    Article  CAS  Google Scholar 

  4. Schafmeister, C.E., Po, J. & Verdine, G.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 122, 5891–5892 (2000).

    Article  CAS  Google Scholar 

  5. De Araujo, A.D. et al. Comparative α-helicity of cyclic pentapeptides in water. Angew. Chem. Int. Ed. 53, 6965–6969 (2014).

    Article  CAS  Google Scholar 

  6. Kawamoto, S.A. et al. Design of triazole-stapled BCL9 α-helical peptides to target the β-catenin/B-cell CLL/lymphoma 9 (BCL9) protein–protein interaction. J. Med. Chem. 55, 1137–1146 (2011).

    Article  Google Scholar 

  7. Haney, C.M., Loch, M.T. & Horne, W.S. Promoting peptide α-helix formation with dynamic covalent oxime side-chain cross-links. Chem. Commun. 47, 10915–10917 (2011).

    Article  CAS  Google Scholar 

  8. Jackson, D.Y., King, D.S., Chmielewski, J., Singh, S. & Schultz, P.G. General approach to the synthesis of short α-helical peptides. J. Am. Chem. Soc. 113, 9391–9392 (1991).

    Article  CAS  Google Scholar 

  9. Lau, Y.H. et al. Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem. Sci. 5, 1804–1809 (2014).

    Article  CAS  Google Scholar 

  10. Jo, H. et al. Development of α-helical calpain probes by mimicking a natural protein–protein interaction. J. Am. Chem. Soc. 134, 17704–17713 (2012).

    Article  CAS  Google Scholar 

  11. Muppidi, A. et al. Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J. Am. Chem. Soc. 134, 14734–14737 (2012).

    Article  CAS  Google Scholar 

  12. Spokoyny, A.M. et al. A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J. Am. Chem. Soc. 135, 5946–5949 (2013).

    Article  CAS  Google Scholar 

  13. Brunel, F.M. & Dawson, P.E. Synthesis of constrained helical peptides by thioether ligation: application to analogs of gp41. Chem. Commun. 2552–2554 (2005).

  14. Zhang, F., Sadovski, O., Xin, S.J. & Woolley, G.A. Stabilization of folded peptide and protein structures via distance matching with a long, rigid cross-linker. J. Am. Chem. Soc. 129, 14154–14155 (2007).

    Article  CAS  Google Scholar 

  15. Lau, Y.H. et al. Investigating peptide sequence variations for 'double-click' stapled p53 peptides. Org. Biomol. Chem. 12, 4074–4077 (2014).

    Article  CAS  Google Scholar 

  16. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  17. Tornøe, C.W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  Google Scholar 

  18. Huisgen, R. 1,3-Dipolar cycloadditions. Proc. Chem. Soc. 357–396 (1961).

  19. Brown, C.J., Cheok, C.F., Verma, C.S. & Lane, D.P. Reactivation of p53: from peptides to small molecules. Trends Pharmacol. Sci. 32, 53–62 (2011).

    Article  CAS  Google Scholar 

  20. Jochim, A.L. & Arora, P.S. Assessment of helical interfaces in protein-protein interactions. Mol. BioSyst. 5, 924–926 (2009).

    Article  CAS  Google Scholar 

  21. Walensky, L.D. & Bird, G.H. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 57, 6275–6288 (2014).

    Article  CAS  Google Scholar 

  22. Okamoto, T. et al. Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem. Biol. 8, 297–302 (2012).

    Article  Google Scholar 

  23. Bird, G.H., Gavathiotis, E., LaBelle, J.L., Katz, S.G. & Walensky, L.D. Distinct BimBH3 (BimSAHB) stapled peptides for structural and cellular studies. ACS Chem. Biol. 9, 831–837 (2014).

    Article  CAS  Google Scholar 

  24. Okamoto, T. et al. Further insights into the effects of pre-organizing the BimBH3 helix. ACS Chem. Biol. 9, 838–839 (2014).

    Article  CAS  Google Scholar 

  25. Taylor, J.W. The synthesis and study of side-chain lactam-bridged peptides. Pept. Sci. 66, 49–75 (2002).

    Article  CAS  Google Scholar 

  26. Harrison, R.S. et al. Downsizing human, bacterial, and viral proteins to short water-stable α-helices that maintain biological potency. Proc. Natl. Acad. Sci. USA 107, 11686–11691 (2010).

    Article  CAS  Google Scholar 

  27. Fujimoto, K., Kajino, M. & Inouye, M. Development of a series of cross-linking agents that effectively stabilize α-helical structures in various short peptides. Chem. Eur. J. 14, 857–863 (2008).

    Article  CAS  Google Scholar 

  28. Lau, Y.H. & Spring, D.R. Efficient synthesis of Fmoc-protected azido amino acids. Synlett 2011, 1917–1919 (2011).

    Article  Google Scholar 

  29. Torres, O., Yüksel, D., Bernardina, M., Kumar, K. & Bong, D. Peptide tertiary structure nucleation by side-chain crosslinking with metal complexation and double 'click' cycloaddition. Chembiochem 9, 1701–1705 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Leduc, A.-M. et al. Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor–coactivator interactions. Proc. Natl. Acad. Sci. USA 100, 11273–11278 (2003).

    Article  CAS  Google Scholar 

  31. Giordanetto, F. et al. Stapled vasoactive intestinal peptide (VIP) derivatives improve VPAC2 agonism and glucose-dependent insulin secretion. ACS Med. Chem. Lett. 4, 1163–1168 (2013).

    Article  CAS  Google Scholar 

  32. Lau, Y.H., de Andrade, P., Wu, Y. & Spring, D.R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 44, 91–102 (2015).

    Article  CAS  Google Scholar 

  33. Patgiri, A., Jochim, A.L. & Arora, P.S. A hydrogen bond surrogate approach for stabilization of short peptide sequences in α-helical conformation. Acc. Chem. Res. 41, 1289–1300 (2008).

    Article  CAS  Google Scholar 

  34. Frost, J.R., Vitali, F., Jacob, N.T., Brown, M.D. & Fasan, R. Macrocyclization of organo-peptide hybrids through a dual bio-orthogonal ligation: insights from structure-reactivity studies. Chembiochem 14, 147–160 (2013).

    Article  CAS  Google Scholar 

  35. Timmerman, P., Beld, J., Pujik, W.C. & Meloen, R.H. Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry. Chembiochem 6, 821–824 (2005).

    Article  CAS  Google Scholar 

  36. Zou, Y. et al. Covergent diversity-oriented side-chain macrocyclization scan for unprotected polypeptides. Org. Biomol. Chem. 12, 566–573 (2014).

    Article  CAS  Google Scholar 

  37. Kawakami, T. et al. In vitro selection of multiple libraries created by genetic code reprogramming to discover macrocyclic peptides that antagonise VEGFR2 activity in living cells. ACS Chem. Biol. 8, 1205–1214 (2013).

    Article  CAS  Google Scholar 

  38. Lau, Y.H., de Andrade, P., McKenzie, G.J., Venkitaraman, A.R. & Spring, D.R. Linear aliphatic dialkynes as alternative linkers for double-click stapling of p53-derived peptides. Chembiochem 15, 2680–2683 (2014).

    Article  CAS  Google Scholar 

  39. Bernal, F., Tyler, A.F., Korsmeyer, S.J., Walensky, L.D. & Verdine, G.L. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129, 2456–2457 (2007).

    Article  CAS  Google Scholar 

  40. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union, the Engineering and Physical Sciences Research Council, the Biotechnology and Biological Sciences Research Council, the Medical Research Council and the Wellcome Trust. Y.H.L. acknowledges a scholarship from the Cambridge Trusts. P.d.A. thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. [279337/DOS].

Author information

Authors and Affiliations

Authors

Contributions

Y.H.L., Y.W., P.d.A. and D.R.S. designed the experiments. Y.H.L., Y.W. and P.d.A. performed the experiments. All the authors contributed to writing the manuscript.

Corresponding author

Correspondence to David R Spring.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, Y., Wu, Y., de Andrade, P. et al. A two-component 'double-click' approach to peptide stapling. Nat Protoc 10, 585–594 (2015). https://doi.org/10.1038/nprot.2015.033

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.033

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing