Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The zebrafish/tumor xenograft angiogenesis assay

Abstract

Here we describe a method to study tumor angiogenesis in zebrafish (Danio rerio) based on the injection of proangiogenic mammalian tumor cells into the perivitelline space of zebrafish embryos at 48 h post-fertilization. Within 24–48 h, proangiogenic tumor grafts induce a neovascular response originating from the developing subintestinal vessels. This can be observed at macroscopic and microscopic levels after whole-mount alkaline phosphatase staining of wild-type zebrafish embryos, or by fluorescence microscopy in transgenic VEGFR2:G-RCFP embryos in which endothelial cells express the green fluorescent protein under the control of the VEGFR2/KDR promoter. Angiogenesis inhibitors added to the injected cell suspension or to the fish water prevent tumor-induced neovascularization. The assay is rapid and inexpensive, representing a novel tool for investigating tumor angiogenesis and for antiangiogenic drug discovery. Also, gene inactivation by antisense morpholino oligonucleotides injection in zebrafish embryos may allow the identification of genes involved in tumor angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal SIV development in zebrafish embryo.
Figure 2: Visualization of the site of injection of the tumor cell graft in the zebrafish embryo.
Figure 3: Angiogenic responses triggered by tumor cell grafts in the zebrafish embryo.
Figure 4: Effect of long pentraxin 3 (PTX3), an FGF2 antagonist21, on the angiogenic response induced by proangiogenic FGF2-T-MAE cells.

Similar content being viewed by others

References

  1. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Presta, M. et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Hasan, J. et al. Quantitative angiogenesis assays in vivo—a review. Angiogenesis 7, 1–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Lam, S.H. et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat. Biotechnol. 24, 73–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Thisse, C. & Zon, L.I. Organogenesis—heart and blood formation from the zebrafish point of view. Science 295, 457–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Weinstein, B. Vascular cell biology in vivo: a new piscine paradigm? Trends Cell Biol. 12, 439–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Topczewska, J.M. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat. Med. 12, 925–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Haldi, M., Ton, C., Seng, W.L. & McGrath, P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9, 139–151 (2006).

    Article  PubMed  Google Scholar 

  10. Isogai, S., Horiguchi, M. & Weinstein, B.M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230, 278–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Cross, L.M., Cook, M.A., Lin, S., Chen, J.N. & Rubinstein, A.L. Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscler. Thromb. Vasc. Biol. 23, 911–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Nicoli, S., Ribatti, D., Cotelli, F. & Presta, M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 67, 2927–2931 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Pichler, F.B. et al. Chemical discovery and global gene expression analysis in zebrafish. Nat. Biotechnol. 21, 879–883 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Serbedzija, G.N., Flynn, E. & Willett, C.E. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3, 353–359 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Sumanas, S. & Larson, J.D. Morpholino phosphorodiamidate oligonucleotides in zebrafish: a recipe for functional genomics? Brief. Funct. Genomic. Proteomic. 1, 239–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Gilmour, D.T., Jessen, J.R. & Lin, S. in Zebrafish (eds. Nusslein-Volhard, C. & Dahm, R.) 121–143 (Oxford University Press, Oxford, 2002).

    Google Scholar 

  18. Gualandris, A. et al. Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases. Cell Growth Differ. 7, 147–160 (1996).

    CAS  PubMed  Google Scholar 

  19. Stoletov, K. et al. Nigh-resolution imaging of the dynamic tumor cell-vascular interface in transparent zebrafish. Proc. Natl. Acad. Sci. USA 104, 17406–17411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Presta, M., Camozzi, M., Salvatori, G. & Rusnati, M. Role of the soluble pattern recognition receptor PTX3 in vascular biology. J. Cell. Mol. Med. 11, 723–738 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ribatti, D. et al. Alterations of blood vessel development by endothelial cells overexpressing fibroblast growth factor-2. J. Pathol. 189, 590–599 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Giavazzi, R. et al. Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am. J. Pathol. 162, 1913–1926 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Istituto Superiore di Sanità (Oncotechnological Program), Ministero dell'Istruzione, Università e Ricerca (Centro di Eccellenza per l'Innovazione Diagnostica e Terapeutica), Associazione Italiana per la Ricerca sul Cancro, Fondazione Berlucchi and NOBEL Project Cariplo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Presta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicoli, S., Presta, M. The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2, 2918–2923 (2007). https://doi.org/10.1038/nprot.2007.412

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.412

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing