Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors

Abstract

In high-Tc superconductors the magnetic and electronic properties are determined by the probability that valence electrons jump virtually from site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion and favoured by hopping integrals. The spatial extent of the latter is related to transport properties, including superconductivity, and to the dispersion relation of spin excitations (magnons). Here, for three antiferromagnetic parent compounds (single-layer Bi2Sr0.9La1.1CuO6+δ, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical atoms, we compare the magnetic spectra measured by resonant inelastic X-ray scattering over a significant portion of the reciprocal space and with unprecedented accuracy. We observe that the absence of apical oxygens increases the in-plane hopping range and, in CaCuO2, it leads to a genuine three-dimensional (3D) exchange-bond network. These results establish a corresponding relation between the exchange interactions and the crystal structure, and provide fresh insight into the materials dependence of the superconducting transition temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In-plane momentum dependence of the magnetic excitations of antiferromagnetic layered cuprates measured by RIXS at the Cu L3 resonance.
Figure 2: Spectral fitting and three-dimensional dispersions of magnetic excitations in layered cuprates.
Figure 3: Dispersion of the spin excitations and comparison to model calculations.
Figure 4: Phenomenological relation of the spin-wave dispersions with ligand field d z 2 orbital excitations and exchange range parameter.

Similar content being viewed by others

References

  1. Ogata, M. & Fukuyama, H. The t-J model for the oxide high-Tc superconductors. Rep. Prog. Phys. 71, 036501 (2008).

    Article  ADS  Google Scholar 

  2. Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article  ADS  Google Scholar 

  3. Mallett, B. P. P. et al. Dielectric versus magnetic pairing mechanisms in high-temperature cuprate superconductors investigated using Raman scattering. Phys. Rev. Lett. 111, 237001 (2013).

    Article  ADS  Google Scholar 

  4. Munoz, D., Illas, F., Moreira, I. & de, P. R. Accurate prediction of large antiferromagnetic interactions in high-Tc HgBa2Can−1CunO2n+2+δ (n = 2, 3) superconductor parent compounds. Phys. Rev. Lett. 84, 1579–1582 (2000).

    Article  ADS  Google Scholar 

  5. Ellis, D. S. et al. Correlation of the superconducting critical temperature with spin and orbital excitation energies in (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy as measured by resonant inelastic X-ray scattering. Phys. Rev. B 92, 104507 (2015).

    Article  ADS  Google Scholar 

  6. Eisaki, H. et al. Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69, 064512 (2004).

    Article  ADS  Google Scholar 

  7. Coldea, R. et al. Spin waves and electronic interactions in La2CuO4 . Phys. Rev. Lett. 86, 5377–5380 (2001).

    Article  ADS  Google Scholar 

  8. Plumb, K. W., Savici, A. T., Granroth, G. E., Chou, F. C. & Kim, Y.-J. High-energy continuum of magnetic excitations in the two-dimensional quantum antiferromagnet Sr2CuO2Cl2 . Phys. Rev. B 89, 180410(R) (2014).

    Article  ADS  Google Scholar 

  9. Braicovich, L. et al. Magnetic excitations and phase separation in the underdoped La2−xSrxCuO4 superconductor measured by resonant inelastic X-ray scattering. Phys. Rev. Lett. 104, 077002 (2010).

    Article  ADS  Google Scholar 

  10. Ament, L. J. P., Ghiringhelli, G., Moretti Sala, M., Braicovich, L. & van den Brink, J. Theoretical demonstration of how the dispersion of magnetic excitations in cuprate compounds can be determined using resonant inelastic X-ray scattering. Phys. Rev. Lett. 103, 117003 (2009).

    Article  ADS  Google Scholar 

  11. Guarise, M. et al. Measurement of magnetic excitations in the two-dimensional antiferromagnetic Sr2CuO2Cl2 insulator using resonant X-ray scattering: evidence for extended interactions. Phys. Rev. Lett. 105, 157006 (2010).

    Article  ADS  Google Scholar 

  12. Lebert, B. W. et al. Resonant inelastic X-ray scattering study of spin-wave excitations in the cuprate parent compound Ca2CuO2Cl2 . Phys. Rev. B 95, 155110 (2017).

    Article  ADS  Google Scholar 

  13. Le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730 (2011).

    Article  Google Scholar 

  14. Dean, M. P. M. et al. Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1019–1023 (2013).

    Article  ADS  Google Scholar 

  15. Minola, M. et al. Collective nature of spin excitations in superconducting cuprates probed by resonant inelastic X-Ray scattering. Phys. Rev. Lett. 114, 217003 (2016).

    Article  ADS  Google Scholar 

  16. Headings, N. S., Hayden, S. M., Coldea, R. & Perring, T. G. Anomalous high-energy spin excitations in the high-Tc superconductor-parent antiferromagnet La2CuO4 . Phys. Rev. Lett. 105, 247001 (2010).

    Article  ADS  Google Scholar 

  17. Dalla Piazza, B. et al. Unified one-band Hubbard model for magnetic and electronic spectra of the parent compounds of cuprate superconductors. Phys. Rev. B 85, 100508(R) (2012).

    Article  ADS  Google Scholar 

  18. Pavarini, E., Dasgupta, I., Saha-Dasgupta, T., Jepsen, O. & Andersen, O. K. Band-structure trend in hole-doped cuprates and correlation with Tc, max . Phys. Rev. Lett. 87, 047003 (2001).

    Article  ADS  Google Scholar 

  19. Peng, Y. Y. et al. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor. Nat. Commun. 4, 2459 (2013).

    Article  ADS  Google Scholar 

  20. Salluzzo, M. et al. Thickness effect on the structure and superconductivity of Nd1.2Ba1.8Cu3Oz epitaxial films. Phys. Rev. B 72, 134521 (2005).

    Article  ADS  Google Scholar 

  21. Di Castro, D. et al. Occurrence of a high-temperature superconducting phase in (CaCuO2)n/(SrTiO3)m superlattices. Phys. Rev. B 86, 134524 (2012).

    Article  ADS  Google Scholar 

  22. Reznik, D. et al. Direct observation of optical magnons in YBa2Cu3O6.2 . Phys. Rev. B 53, R14741 (1996).

    Article  ADS  Google Scholar 

  23. Hayden, S. M., Aeppli, G., Perring, T. G., Mook, H. A. & Doğan, F. High-frequency spin waves in YBa2Cu3O6.15 . Phys. Rev. B 54, R6905 (1996).

    Article  ADS  Google Scholar 

  24. Dalla Piazza, B. et al. Fractional excitations in the square-lattice quantum antiferromagnet. Nat. Phys. 11, 62–68 (2014).

    Article  Google Scholar 

  25. Ho, C. M., Muthukumar, V. N., Ogata, M. & Anderson, P. W. Nature of spin excitations in two-dimensional Mott insulators: undoped cuprates and other materials. Phys. Rev. Lett. 86, 1626–1629 (2001).

    Article  ADS  Google Scholar 

  26. Ament, L. J. P., Van Veenendaal, M. & Van Den Brink, J. Determining the electron–phonon coupling strength from resonant inelastic X-ray scattering at transition metal L-edges. Europhys. Lett. 95, 27008 (2011).

    Article  ADS  Google Scholar 

  27. Di Castro, D. et al. High-Tc superconductivity at the interface between the CaCuO2 and SrTiO3 insulating oxides. Phys. Rev. Lett. 115, 147001 (2015).

    Article  ADS  Google Scholar 

  28. Adachi, S., Yamauchi, H., Tanaka, S. & Môri, N. High-pressure synthesis of superconducting Sr–Ca–Cu–O samples. Physica C 208, 226–230 (1993).

    Article  ADS  Google Scholar 

  29. Tranquada, J. M., Shirane, G., Keimer, B., Shamoto, S. & Sato, M. Neutron scattering study of magnetic excitations in YBa2Cu3O6+x . Phys. Rev. B 40, 4503–4516 (1989).

    Article  ADS  Google Scholar 

  30. Singh, R. R. P. Thermodynamic parameters of the T = 0, spin = 1/2 square-lattice Heisenberg antiferromagnet. Phys. Rev. B 39, 9760–9763 (1989).

    Article  ADS  Google Scholar 

  31. Tohyama, T. & Maekawa, S. Angle-resolved photoemission in high Tc cuprates from theoretical viewpoints. Supercond. Sci. Technol. 13, R17 (2000).

    Article  ADS  Google Scholar 

  32. MacDonald, A. H., Girvin, S. M. & Yoshioka, D. t/U expansion for the Hubbard model. Phys. Rev. B 37, 9753–9756 (1988).

    Article  ADS  Google Scholar 

  33. Delannoy, J. Y., Gingras, M. J. P., Holdsworth, P. C. W. & Tremblay, A. M. Low-energy theory of the t-t′-t ′′-U Hubbard model at half-filling: interaction strengths in cuprate superconductors and an effective spin-only description of La2CuO4 . Phys. Rev. B 79, 235130 (2009).

    Article  ADS  Google Scholar 

  34. Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate magnetic structures. J. Phys. Condens. Matter 27, 166002 (2015).

    Article  ADS  Google Scholar 

  35. Sala, M. M. et al. Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu L3 resonant inelastic X-ray scattering. New J. Phys. 13, 043026 (2011).

    Article  Google Scholar 

  36. Hozoi, L., Siurakshina, L., Fulde, P. & van den Brink, J. Ab initio determination of Cu 3d orbital energies in layered copper oxides. Sci. Rep. 1, 65 (2011).

    Article  ADS  Google Scholar 

  37. Johnston, S. et al. Systematic study of electron–phonon coupling to oxygen modes across the cuprates. Phys. Rev. B 82, 064513 (2010).

    Article  ADS  Google Scholar 

  38. Sakakibara, H. et al. Orbital mixture effect on the Fermi-surface-Tc correlation in the cuprate superconductors: bilayer vs. single layer. Phys. Rev. B 89, 224505 (2014).

    Article  ADS  Google Scholar 

  39. Dahm, T. et al. Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nat. Phys. 5, 217–221 (2009).

    Article  Google Scholar 

  40. Sakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Two-orbital model explains the higher transition temperature of the single-layer Hg-cuprate superconductor compared to that of the La-cuprate superconductor. Phys. Rev. Lett. 105, 057003 (2010).

    Article  ADS  Google Scholar 

  41. Sakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Origin of the material dependence of Tc in the single-layered cuprates. Phys. Rev. B 85, 064501 (2012).

    Article  ADS  Google Scholar 

  42. Ohta, Y., Tohyama, T. & Maekawa, S. Apex oxygen and critical temperature in copper oxide superconductors: universal correlation with the stability of local singlets. Phys. Rev. B 43, 2968–2982 (1991).

    Article  ADS  Google Scholar 

  43. Azuma, M., Hiroi, Z., Takano, M., Bando, Y. & Takeda, Y. Superconductivity at 110 K in the infinite-layer compound (Sr1−xCax)1−yCuO2 . Nature 356, 775–776 (1992).

    Article  ADS  Google Scholar 

  44. Zhang, H. et al. Identity of planar defects in the ‘Infinite-layer’ copper oxide superconductor. Nature 370, 352–354 (1994).

    Article  ADS  Google Scholar 

  45. Di Castro, D. et al. Tc up to 50 K in superlattices of insulating oxides. Supercond. Sci. Technol. 27, 044016 (2014).

    Article  ADS  Google Scholar 

  46. Ideta, S. I. et al. Energy scale directly related to superconductivity in high-Tc cuprates: universality from the temperature-dependent angle-resolved photoemission of Bi2Sr2Ca2Cu3O10+δ . Phys. Rev. B 85, 104515 (2012).

    Article  ADS  Google Scholar 

  47. Braicovich, L. et al. Momentum and polarization dependence of single-magnon spectral weight for Cu L3-edge resonant inelastic X-ray scattering from layered cuprates. Phys. Rev. B 81, 174533 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by MIUR Italian Ministry for Research through project PIK Polarix and by Fondazione CARIPLO (project ERC-P-ReXS, 2016-0790). M.M. was partially supported by the Alexander von Humboldt Foundation. X.J.Z. is grateful for financial support from the National Natural Science Foundation of China (11334010 and 11534007), the National Key Research and Development Program of China (2016YFA0300300) and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB07020300). The authors acknowledge insightful discussions with O. Andersen, E. D. Torre, T. Devereaux, C. Di Castro, M. Grilli and K. Wohlfeld. The experimental data were collected at beam line ID32 of the European Synchrotron (ESRF) in Grenoble (F) using the ERIXS spectrometer designed jointly by the ESRF and Politecnico di Milano.

Author information

Authors and Affiliations

Authors

Contributions

G.G., Y.Y.P. and L.B. conceived and designed the experiments with suggestions from B.K.; G.G., Y.Y.P., L.B., M.M., G.D., N.B.B., K.K., A.A., M.C., M.L.T., D.D.C. and G.M.D.L. performed the measurements. D.D.C. and G.B. grew and characterized the CCO and CCO/STO thin films; M.S. and G.M.D.L. grew and characterized the NBCO thin films; Y.Y.P., X.S. and X.J.Z. synthesized, grew and characterized the Bi2201 single crystals. Y.Y.P. and G.G. analysed the experimental data; G.G., Y.Y.P., M.C. and M.M. performed the model calculations. Y.Y.P. and G.G. wrote the manuscript with the help of M.L.T., B.K. and M.M., and contributions from all authors.

Corresponding author

Correspondence to G. Ghiringhelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Dellea, G., Minola, M. et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nature Phys 13, 1201–1206 (2017). https://doi.org/10.1038/nphys4248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing