Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deterministic polarization chaos from a laser diode

Subjects

Abstract

Fifty years after the invention of the laser diode, and forty years after the butterfly effect signified the unpredictability of deterministic chaos, it is commonly believed that a laser diode behaves like a damped nonlinear oscillator and cannot be driven into chaotic operation without additional forcing or parameter modulation. Here, we counter that belief and report the first example of a free-running laser diode generating chaos. The underlying physics comprises a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time series and show, theoretically, the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles noise-driven mode hopping, but shows opposite statistical properties. Our findings open up new research areas for the creation of controllable and integrated sources of optical chaos.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental observations showing chaotic polarization mode hopping in a quantum-dot VCSEL.
Figure 2: Route to chaos in the SFM framework.
Figure 3: Statistical properties of mode dwell time and comparison between polarization and Lorenz chaos.
Figure 4: Chaos identification.
Figure 5: Discrimination between chaos and coloured noise.

Similar content being viewed by others

References

  1. Poincaré, H. Science and Method (Dovers, 1952).

    MATH  Google Scholar 

  2. Andronov, A. A. Les cycles limites de Poincaré et la théorie des oscillations auto-entretenues. C.R. Acad. Sci. 189, 559–561 (1929).

    Google Scholar 

  3. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  ADS  Google Scholar 

  4. Li, T.-Y. & Yorke, J. A. Period three implies chaos. Am. Math. Monthly 82, 985–992 (1975).

    Article  MathSciNet  Google Scholar 

  5. Strogatz, S. H. Nonlinear dynamics: ordering chaos with disorder. Nature 378, 444 (1995).

    Article  ADS  Google Scholar 

  6. Coffey, D. S. Self-organization, complexity and chaos: the new biology for medicine. Nature Med. 4, 882–885 (1998).

    Article  Google Scholar 

  7. Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Controlling cardiac chaos. Science 257, 1230–1235 (1992).

    Article  ADS  Google Scholar 

  8. Steingrube, S., Timme, M., Wörgötter, F. & Manoonpong, P. Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Phys. 6, 224–230 (2010).

    Article  ADS  Google Scholar 

  9. Haken, H. Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–78 (1975).

    Article  ADS  Google Scholar 

  10. Tredicce, J. R., Arecchi, F. T., Lippi, G. L. & Puccioni, G. P. Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2, 173–183 (1985).

    Article  ADS  Google Scholar 

  11. Weiss, C. O., Abraham, N. B. & Hübner, U. Homoclinic and heteroclinic chaos in a single-mode laser. Phys. Rev. Lett. 61, 1587–1590 (1988).

    Article  ADS  Google Scholar 

  12. Yamada, T. & Graham, R. Chaos in a laser system under a modulated external field. Phys. Rev. Lett. 45, 1322–1324 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  13. Arecchi, F. T., Meucci, R., Puccioni, G. & Tredicce, J. Experimental evidence of subharmonic bifurcations, multistability and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982).

    Article  ADS  Google Scholar 

  14. Kubodera, K. & Otsuka, K. Spike-mode oscillations in lasers-diode pumped LiNdP4O12 lasers. IEEE J. Quantum Electron. 17, 1139–1144 (1981).

    Article  ADS  Google Scholar 

  15. Otsuka, K. & Kawaguchi, H. Period-doubling bifurcations in detuned lasers with injected signals. Phys. Rev. A 29, 2953–2956 (1984).

    Article  ADS  Google Scholar 

  16. Bracikowski, C. & Roy, R. Chaos in a multimode solid-state laser system. Chaos 1, 49–64 (1991).

    Article  ADS  Google Scholar 

  17. Mukai, T. & Otsuka, K. New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity. Phys. Rev. Lett. 55, 1711–1714 (1985).

    Article  ADS  Google Scholar 

  18. Kawaguchi, H. Optical bistability and chaos in a semiconductor laser with a saturable absorber. Appl. Phys. Lett. 45, 1264–1266 (1984).

    Article  ADS  Google Scholar 

  19. Simpson, T. B., Liu, J. M., Gavrielides, A., Kovanis, V. & Alsing, P. M. Period-doubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett. 64, 3539–3541 (1994).

    Article  ADS  Google Scholar 

  20. San Miguel, M., Feng, Q. & Moloney, J. V. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1728–1739 (1995).

    Article  ADS  Google Scholar 

  21. VanWiggeren, G. D. & Roy, R. Communication with chaotic lasers. Science 279, 1198–1200 (1998).

    Article  ADS  Google Scholar 

  22. Argyris, A. et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438, 343–346 (2005).

    Article  ADS  Google Scholar 

  23. Larger, L. & Dudley, J. M. Nonlinear dynamics: optoelectronics chaos. Nature 465, 41–42 (2010).

    Article  ADS  Google Scholar 

  24. Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photon. 2, 728–732 (2008).

    Article  ADS  Google Scholar 

  25. Kanter, I., Aviad, Y., Reidler, I., Cohen, E. & Rosenbluh, M. An optical ultrafast random bit generator. Nature Photon. 4, 58–61 (2010).

    Article  ADS  Google Scholar 

  26. Rontani, D., Locquet, A., Sciamanna, M. & Citrin, D. S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 32, 2960–2962 (2007).

    Article  ADS  Google Scholar 

  27. Albert, F. et al. Observing chaos for quantum-dot microlasers with external feedback. Nature Commun. 2, 366 (2011).

    Article  ADS  Google Scholar 

  28. Oliver, N., Soriano, M. C., Sukow, D. W. & Fischer, I. Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation. Opt. Lett. 36, 4632–4634 (2011).

    Article  ADS  Google Scholar 

  29. Sciamanna, M., Gatare, I., Locquet, A. & Panajotov, K. Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection. Phys. Rev. E 75, 056213 (2007).

    Article  ADS  Google Scholar 

  30. Yu, S. F., Shum, P. & Ngo, N. Q. Performance of optical chaotic communication systems using multimode vertical-cavity surface-emitting lasers. Opt. Commun. 200, 143–152 (2001).

    Article  ADS  Google Scholar 

  31. Hopfer, F. et al. Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth. Appl. Phys. Lett. 89, 141106 (2006).

    Article  ADS  Google Scholar 

  32. Olejniczak, L. et al. Polarization switching and polarization mode hopping in quantum dot vertical-cavity surface-emitting lasers. Opt. Express 19, 2476–2484 (2011).

    Article  ADS  Google Scholar 

  33. Willemsen, M. B., Khalid, M. U. F., Van Exter, M. P. & Woerdman, J. P. Polarization switching of a vertical-cavity surface-emitting lasers as a Kramers hopping problem. Phys. Rev. Lett. 82, 4815–4818 (1999).

    Article  ADS  Google Scholar 

  34. Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time-series. Physica D 16, 285–317 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  35. Martin-Regalado, J., Prati, F., San Miguel, M. & Abraham, N. B. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33, 765–783 (1997).

    Article  ADS  Google Scholar 

  36. Meier, F. & Zakharchenya, B. P. Optical Orientation (North-Holland, 1984).

    Google Scholar 

  37. Sondermann, M., Ackemann, T., Balle, S., Mulet, J. & Panajotov, K. Experimental and theoretical investigations on elliptically polarized dynamical transition states in the polarization switching of vertical-cavity surface-emitting lasers. Opt. Commun. 235, 421–434 (2004).

    Article  ADS  Google Scholar 

  38. Abarbanel, H. D. I., Brown, R. & Kennel, M. B. Local Lyapunov exponents computed from observed data. J. Nonlin. Sci. 2, 343–365 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  39. Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989).

    Article  Google Scholar 

  40. Kanter, I., Frydman, A. & Ater, A. Utilizing hidden Markov processes as a tool for experimental physics. Europhys. Lett. 69, 798–804 (2005).

    Article  ADS  Google Scholar 

  41. Grassberger, P. & Procaccia, I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983).

    Article  ADS  Google Scholar 

  42. Fraedrich, K. & Risheng, W. Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding. Physica D 65, 373–398 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  43. Nagler, B. et al. Polarization mode-hopping in single-mode vertical-cavity surface-emitting lasers: theory and experiment. Phys. Rev. A 68, 013813 (2003).

    Article  ADS  Google Scholar 

  44. Provenzale, A., Smith, L. A., Vio, R. & Murante, G. Distinguishing between low-dimensional dynamics and randomness in measured time-series. Physica D 58, 31–49 (1992).

    Article  ADS  Google Scholar 

  45. Hovel, S. et al. Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 92, 041118 (2008).

    Article  ADS  Google Scholar 

  46. Adachi, T., Ohno, Y., Terauchi, R., Matsukura, F. & Ohno, H. Mobility dependence of electron spin relaxation time in n-type InGaAs/InAlAs multiple quantum wells. Physica E 7, 1015–1019 (2000).

    Article  ADS  Google Scholar 

  47. Gerhardt, N. C. et al. Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 99, 151107 (2011).

    Article  ADS  Google Scholar 

  48. VanWiggeren, G. D. & Roy, R. Communication with dynamically fluctuating states of light polarization. Phys. Rev. Lett. 88, 097903 (2002).

    Article  ADS  Google Scholar 

  49. Renaudier, J. et al. Linear fiber impairments mitigation of 40-Gbit/s polarization multiplexed QPSK by digital processing in a coherent receiver. J. Lightw. Technol. 26, 36–42 (2008).

    Article  ADS  Google Scholar 

  50. Scirè, A., Colet, P. & San Miguel, M. Phase synchronization and polarization ordering of globally coupled oscillators. Phys. Rev. E 70, 035201 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Conseil Régional de Lorraine, Fondation Supélec, FWO-Vlaanderen, the METHUSALEM programme of the Flemish government, and the Interuniversity Attraction Poles programme of the Belgian Science Policy Office (grant no. IAP P7-35 ‘photonics@be’).

Author information

Authors and Affiliations

Authors

Contributions

M.S. and K.P. initiated the study. M.V. and M.S. performed the simulation of the laser dynamics. M.V., K.P. and M.S. carried out chaos identification from experimental and theoretical time traces. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Marc Sciamanna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virte, M., Panajotov, K., Thienpont, H. et al. Deterministic polarization chaos from a laser diode. Nature Photon 7, 60–65 (2013). https://doi.org/10.1038/nphoton.2012.286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing