Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

Abstract

Einstein realized that the fluctuations of a Brownian particle can be used to ascertain the properties of its environment1. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes2,3, providing insight into soft matter physics4,5,6 and leading to applications from energy harvesting to medical imaging7,8. Here, we use heated optically levitated nanospheres to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and provides a means for testing non-equilibrium thermodynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental schematic and photograph of levitation experiment.
Figure 2: Two-dimensional Brownian motion and its variation with trap laser intensity.
Figure 3: Analysis of heating as a function of pressure, spatial direction and sphere size.
Figure 4: Minimum attainable pressure.

Similar content being viewed by others

References

  1. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. (Berlin) 322, 549–560 (1905).

    Article  Google Scholar 

  2. Franosch, T. et al. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011).

    Article  CAS  Google Scholar 

  3. Bérut, A. et al. Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483, 187–189 (2012).

    Article  Google Scholar 

  4. Guydosh, N. R. & Block, S. M. Direct observation of the binding state of the kinesin head to the microtubule. Nature 461, 125–128 (2009).

    Article  CAS  Google Scholar 

  5. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    Article  CAS  Google Scholar 

  6. Tischer, C. et al. Three-dimensional thermal noise imaging. Appl. Phys. Lett. 79, 3878–3880 (2001).

    Article  CAS  Google Scholar 

  7. Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

    Article  Google Scholar 

  8. Le Bihan, D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986).

    Article  CAS  Google Scholar 

  9. Hinkle, L. D. & Kendall, B. R. F. Brownian motion of a particle levitated in vacuum. J. Vac. Sci. Technol. A 10, 243–247 (1992).

    Article  CAS  Google Scholar 

  10. Li, T., Kheifets, S., Medellin, D. & Raizen, M. G. Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010).

    Article  CAS  Google Scholar 

  11. Mojarad, N. & Krishnan, M. Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nature Nanotech. 7, 448–452 (2012).

    Article  CAS  Google Scholar 

  12. Rings, D., Schachoff, R., Selmke, M., Cichos, F. & Kroy, K. Hot Brownian motion. Phys. Rev. Lett. 105, 090604 (2010).

    Article  Google Scholar 

  13. Ciliberto, S., Imparato, A., Naert, A. & Tanase, M. Heat flux and entropy produced by thermal fluctuations. Phys. Rev. Lett. 110, 180601 (2013).

    Article  CAS  Google Scholar 

  14. Palacci, J., Cottin-Bizonne, C., Ybert, Ch. & Bocquet, L. Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105, 088304 (2010).

    Article  Google Scholar 

  15. Jiang, H-R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010).

    Article  Google Scholar 

  16. Goodman, F. O. Thermal accommodation coefficients. J. Phys. Chem. 84, 1431–1445 (1980).

    Article  CAS  Google Scholar 

  17. Epstein, P. S. On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710–733 (1924).

    Article  CAS  Google Scholar 

  18. Peterman, E. J. G., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    Article  CAS  Google Scholar 

  19. Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A 9, S196–S203 (2007).

    Article  Google Scholar 

  20. http://www.azonano.com/article.aspx?ArticleID=3398.

  21. Ganta, D., Dale, E. B., Rezac, J. P. & Rosenberger, A. T. Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator. J. Chem. Phys. 135, 084313 (2011).

    Article  CAS  Google Scholar 

  22. Landström, L. & Heszler, P. Analysis of blackbody-like radiation from laser-heated gas-phase tungsten nanoparticles. J. Phys. Chem. B 108, 6216–6221 (2004).

    Article  Google Scholar 

  23. Ashkin, A. & Dziedzic, J. M. Optical levitation in high vacuum. Appl. Phys. Lett. 28, 333–335 (1976).

    Article  Google Scholar 

  24. Monteiro, T. et al. Dynamics of levitated nanospheres: towards the strong coupling regime. New J. Phys. 15, 015001 (2013).

    Article  Google Scholar 

  25. Burnham, D. R., Reece, P. J. & McGloin, D. Parameter exploration of optically trapped liquid aerosols. Phys. Rev. E 82, 051123 (2010).

    Article  CAS  Google Scholar 

  26. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).

    Article  CAS  Google Scholar 

  27. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  Google Scholar 

  28. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    Article  CAS  Google Scholar 

  29. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

    Article  Google Scholar 

  30. Bennett, J. S. et al. Spatially-resolved rotational microrheology with an optically-trapped sphere. Sci. Rep. 3, 01759 (2013).

    Article  Google Scholar 

  31. Enger, J., Goksör, M., Ramser, K., Hagberg, P. & Hanstorp, D. Optical tweezers applied to a microfluidic system. Lab Chip 4, 196–200 (2004).

    Article  CAS  Google Scholar 

  32. Seifert, U. Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank I. Ford for discussions and I. Llorente Garcia, D. Duffy and I. Ford for critical reading of the manuscript. J.M. and P.B. acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) of the UK (EP/H050434/1). T.D. is supported by the Royal Thai Government and the EPSRC. J.A. is supported by the Royal Society. This work was supported by the European COST network MP1209.

Author information

Authors and Affiliations

Authors

Contributions

J.M. and P.B. designed the experiments. J.M. performed the experiments, analysed the data and performed error analysis. T.D and J.A. developed the two-bath model. J.A. derived the damping rate. P.B. performed the field simulation. All authors contributed to data analysis and wrote the manuscript.

Corresponding authors

Correspondence to J. Millen or J. Anders.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millen, J., Deesuwan, T., Barker, P. et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotech 9, 425–429 (2014). https://doi.org/10.1038/nnano.2014.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing