Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Graphene oxide windows for in situ environmental cell photoelectron spectroscopy

Abstract

The performance of new materials and devices often depends on processes taking place at the interface between an active solid element and the environment (such as air, water or other fluids). Understanding and controlling such interfacial processes require surface-specific spectroscopic information acquired under real-world operating conditions, which can be challenging because standard approaches such as X-ray photoelectron spectroscopy generally require high-vacuum conditions. The state-of-the-art approach to this problem relies on unique and expensive apparatus including electron analysers coupled with sophisticated differentially pumped lenses. Here, we develop a simple environmental cell with graphene oxide windows that are transparent to low-energy electrons (down to 400 eV), and demonstrate the feasibility of X-ray photoelectron spectroscopy measurements on model samples such as gold nanoparticles and aqueous salt solution placed on the back side of a window. These proof-of-principle results show the potential of using graphene oxide, graphene and other emerging ultrathin membrane windows for the fabrication of low-cost, single-use environmental cells compatible with commercial X-ray and Auger microprobes as well as scanning or transmission electron microscopes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of ambient-pressure XPS systems.
Figure 2: Fabrication of GO windows for E-cells.
Figure 3: Experimental setup and GO overlayer characterization.
Figure 4: Principle of effective attenuation length measurements of GO sheets.
Figure 5: Suspended GO membranes as windows for an E-cell.
Figure 6: XPS on wet samples.

Similar content being viewed by others

References

  1. Bluhm, H. et al. In situ X-ray photoelectron spectroscopy studies of gas–solid interfaces at near-ambient conditions. MRS Bull. 32, 1022–1030 (2007).

    Article  CAS  Google Scholar 

  2. Somorjai, G. A. & Park, J. Y. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev. 37, 2155–2162 (2008).

    Article  CAS  Google Scholar 

  3. Parsons, D. F. Structure of wet specimens in electron microscopy. Science 186, 407–414 (1974).

    Article  CAS  Google Scholar 

  4. Boyes, E. D. & Gai, P. L. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219–232 (1997).

    Article  CAS  Google Scholar 

  5. Sharma, R. & Weiss, K. Development of a TEM to study in situ structural and chemical changes at an atomic level during gas–solid interactions at elevated temperatures. Microsc. Res. Tech. 42, 270–280 (1998).

    Article  CAS  Google Scholar 

  6. Marton, L. La microscopie electronique des objects biologiques. Bull. de L'Acad. Royale de Belgique 21, 553–560 (1935).

    Google Scholar 

  7. Abrams, I. & McBain, J. A closed cell for electron microscopy. J. Appl. Phys. 15, 607–609 (1944).

    Article  CAS  Google Scholar 

  8. Swift, J. & Brown, A. An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J. Phys. E 3, 924–926 (1970).

    Article  CAS  Google Scholar 

  9. Kohyama, N., Fukushima, K. & Fukami, A. Observation of hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clays Clay Miner. 26, 25–40 (1978).

    Article  CAS  Google Scholar 

  10. Daulton, T. L., Little, B. J., Lowe, K. & Jones-Meehan, J. In situ environmental cell transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal. 7, 470–485 (2001).

    CAS  Google Scholar 

  11. Gai, P. L. & Calvino, J. J. Electron microscopy in the catalysis of alkane oxidation, environmental control, and alternative energy sources. Ann. Rev. Mater. Res. 35, 465–504 (2005).

    Article  CAS  Google Scholar 

  12. Thiberge, S., Zik, O. & Moses, E. An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum. 75, 2280–2289 (2004).

    Article  CAS  Google Scholar 

  13. de Jonge, N., Peckys, D. B., Kremers, G. J. & Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl Acad. Sci. USA 106, 2159–2164 (2009).

    Article  CAS  Google Scholar 

  14. Hitchcock, A. P., Morin, C., Heng, Y. M., Cornelius, R. M. & Brash, J. L. Towards practical soft X-ray spectromicroscopy of biomaterials. J. Biomat. Sci. Polymer Edition 13, 919–937 (2002).

    Article  CAS  Google Scholar 

  15. Yoon, T. H. Applications of soft X-ray spectromicroscopy in material and environmental sciences. Appl. Spectrosc. Rev. 44, 91–122 (2009).

    Article  CAS  Google Scholar 

  16. Salmeron, M. & Schlogl, R. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008).

    Article  CAS  Google Scholar 

  17. Winter, B. et al. Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 108, 2625–2632 (2004).

    Article  CAS  Google Scholar 

  18. Starr, D. E., Wong, E. K., Worsnop, D. R., Wilson, K. R. & Bluhm, H. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces. Phys. Chem. Chem. Phys. 10, 3093–3098 (2008).

    Article  CAS  Google Scholar 

  19. Gunther, S. et al. In situ X-ray photoelectron spectroscopy of catalytic ammonia oxidation over a Pt(533) surface. J. Phys. Chem. C 112, 15382–15393 (2008).

    Article  CAS  Google Scholar 

  20. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  21. Pacile, D., Meyer, J. C., Girit, C. O. & Zettl, A. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008).

    Article  Google Scholar 

  22. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  23. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    Article  CAS  Google Scholar 

  24. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 475, 706–710 (2009).

    Article  Google Scholar 

  25. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  26. Meyer, J. C., Girit, C. O., Crommie, M. F. & Zettl, A. Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319–322 (2008).

    Article  CAS  Google Scholar 

  27. Wilson, N. R. et al. Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547–2556 (2009).

    Article  CAS  Google Scholar 

  28. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  CAS  Google Scholar 

  29. Booth, T. J. et al. Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8, 2442–2446 (2008).

    Article  CAS  Google Scholar 

  30. Stolyarova, E. et al. Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett. 9, 332–337 (2009).

    Article  CAS  Google Scholar 

  31. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  32. Chen, C. M. et al. Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21, 3007–3011 (2009).

    Article  CAS  Google Scholar 

  33. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  34. Cote, L. J., Kim, F. & Huang, J. X. Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2009).

    Article  CAS  Google Scholar 

  35. Gregoratti, L. et al. 48-Channel electron detector for photoemission spectroscopy and microscopy. Rev. Sci. Instrum. 75, 64–69 (2004).

    Article  CAS  Google Scholar 

  36. Kolmakov, A. et al. Spectromicroscopy for addressing the surface and electron transport properties of individual 1-D nanostructures and their networks. ACS Nano 2, 1993–2000 (2008).

    Article  CAS  Google Scholar 

  37. Cumpson, P. J. & Seah, M. P. Elastic scattering corrections in AES and XPS. 2. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments. Surf. Interface Anal. 25, 430–446 (1997).

    Article  CAS  Google Scholar 

  38. Powell, C. J. & Jablonski, A. Surface sensitivity of X-ray photoelectron spectroscopy. Nucl. Instrum. Methods A 601, 54–65 (2009).

    Article  CAS  Google Scholar 

  39. Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509–519 (2010).

    Article  CAS  Google Scholar 

  40. Mkhoyan, K. A. et al. Atomic and electronic structure of graphene-oxide. Nano Lett. 9, 1058–1063 (2009).

    Article  CAS  Google Scholar 

  41. Cote, L. J., Cruz-Silva, R. & Huang, J. X. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131, 11027–11032 (2009).

    Article  CAS  Google Scholar 

  42. Yang, D. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47, 145–152 (2009).

    Article  CAS  Google Scholar 

  43. Xu, K., Cao, P. G. & Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329, 1188–1191 (2010).

    Article  CAS  Google Scholar 

  44. Aleman, B. et al. Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4, 4762–4768 (2010).

    Article  CAS  Google Scholar 

  45. EMS & GF1200 Graphene Support Films for TEM (Electron Microscopy Supplies, 2010); available via www.emsdiasum.com.

Download references

Acknowledgements

A.K. thanks E. Strelcov, C. Watts and J. Bozzola (SIUC) for their help in the preparation of the experiment. The work at ELETTRA was partly supported by AMBIOSEN Friuli Venezia-Giulia regional grant 47/78. M.K.A. thanks P. Parisse for AFM measurements. The TEM and FIB work was performed in the EPIC facility of the NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois and Northwestern University. The SIUC part of the research was supported by a NSF ECCS-0925837 grant. L.J.C and J.H. were supported by the NSF through a CAREER award (DMR 0955612).

Author information

Authors and Affiliations

Authors

Contributions

A.K. conceived the project, designed and tested the E-cell prototypes, and assembled the manuscript, with contributions from all co-authors. D.D., L.C. and J.H. developed the methods of GO synthesis, processing and Langmuir–Blodgett deposition onto SiO2/Si3N4 membrane samples. D.D. performed all micromachining and carried out SEM, TEM and HRTEM characterization of the GO overlayers and suspended membranes. M.K.A., M.A., L.G., S.G. and M.K conducted the SPEM experiments and the corresponding data analysis of the photoelectron images and spectra. A.K. and S.G. participated in spectromicroscopy tests as users of the ELETTRA ESCA microscopy beamline.

Corresponding author

Correspondence to Andrei Kolmakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolmakov, A., Dikin, D., Cote, L. et al. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nature Nanotech 6, 651–657 (2011). https://doi.org/10.1038/nnano.2011.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing