Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain

Abstract

Vascular endothelial growth factor C (VEGF-C) was first identified as a regulator of the vascular system, where it is required for the development of lymphatic vessels. Here we report actions of VEGF-C in the central nervous system. We detected the expression of the VEGF-C receptor VEGFR-3 in neural progenitor cells in Xenopus laevis and mouse embryos. In Xenopus tadpole VEGF-C knockdowns and in mice lacking Vegfc, the proliferation of neural progenitors expressing VEGFR-3 was severely reduced, in the absence of intracerebral blood vessel defects. In addition, Vegfc-deficient mouse embryos showed a selective loss of oligodendrocyte precursor cells (OPCs) in the embryonic optic nerve. In vitro, VEGF-C stimulated the proliferation of OPCs expressing VEGFR-3 and nestin-positive ventricular neural cells. VEGF-C thus has a new, evolutionary conserved function as a growth factor selectively required by neural progenitor cells expressing its receptor VEGFR-3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGF-C is required for neural development in Xenopus.
Figure 2: The expression of VEGFR-3 and VEGF-C in the embryonic mouse brain.
Figure 3: Proliferative effect of VEGF-C on optic nerve OPCs.
Figure 4: OPCs are severely reduced in the optic nerve of Vegfc-deficient mice.
Figure 5: VEGF-C is required for neurogenesis in the olfactory bulb.

Similar content being viewed by others

References

  1. Hogan, K.A., Ambler, C.A., Chapman, D.L. & Bautch, V.L. The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development 131, 1503–1513 (2004).

    Article  CAS  Google Scholar 

  2. Palmer, T.D., Willhoite, A.R. & Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  Google Scholar 

  3. Cao, L. et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 36, 827–835 (2004).

    Article  CAS  Google Scholar 

  4. Mi, H., Haeberle, H. & Barres, B.A. Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 21, 1538–1547 (2001).

    Article  CAS  Google Scholar 

  5. Louissaint, A., Jr ., Rao, S., Leventhal, C. & Goldman, S.A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    Article  CAS  Google Scholar 

  6. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  Google Scholar 

  7. Carmeliet, P. Blood vessels and nerves: common signals, pathways and diseases. Nat. Rev. Genet. 4, 710–720 (2003).

    Article  CAS  Google Scholar 

  8. Klagsbrun, M. & Eichmann, A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 16, 535–548 (2005).

    Article  CAS  Google Scholar 

  9. Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  Google Scholar 

  10. Breier, G., Albrecht, U., Sterrer, S. & Risau, W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521–532 (1992).

    CAS  PubMed  Google Scholar 

  11. Ogunshola, O.O. et al. Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J. Biol. Chem. 277, 11410–11415 (2002).

    Article  CAS  Google Scholar 

  12. Yang, K. & Cepko, C.L. Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells. J. Neurosci. 16, 6089–6099 (1996).

    Article  CAS  Google Scholar 

  13. Yourey, P.A., Gohari, S., Su, J.L. & Alderson, R.F. Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells. J. Neurosci. 20, 6781–6788 (2000).

    Article  CAS  Google Scholar 

  14. Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950 (2002).

    Article  CAS  Google Scholar 

  15. Schanzer, A. et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14, 237–248 (2004).

    Article  Google Scholar 

  16. Sondell, M., Lundborg, G. & Kanje, M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19, 5731–5740 (1999).

    Article  CAS  Google Scholar 

  17. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001).

    Article  CAS  Google Scholar 

  18. Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. 34, 383–394 (2003).

    Article  CAS  Google Scholar 

  19. Sondell, M., Sundler, F. & Kanje, M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur. J. Neurosci. 12, 4243–4254 (2000).

    Article  CAS  Google Scholar 

  20. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 1751 (1996).

    Article  CAS  Google Scholar 

  21. Lee, J. et al. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl. Acad. Sci. USA 93, 1988–1992 (1996).

    Article  CAS  Google Scholar 

  22. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article  CAS  Google Scholar 

  23. Kaipainen, A. et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92, 3566–3570 (1995).

    Article  CAS  Google Scholar 

  24. Jussila, L. & Alitalo, K. Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673–700 (2002).

    Article  CAS  Google Scholar 

  25. Karkkainen, M.J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    Article  CAS  Google Scholar 

  26. Ny, A. et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat. Med. 11, 998–1004 (2005).

    Article  CAS  Google Scholar 

  27. Dumont, D.J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946–949 (1998).

    Article  CAS  Google Scholar 

  28. Rowitch, D.H., Lu, Q.R., Kessaris, N. & Richardson, W.D. An 'oligarchy' rules neural development. Trends Neurosci. 25, 417–422 (2002).

    Article  CAS  Google Scholar 

  29. Shi, J., Marinovich, A. & Barres, B.A. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci. 18, 4627–4636 (1998).

    Article  CAS  Google Scholar 

  30. Small, R.K., Riddle, P. & Noble, M. Evidence for migration of oligodendrocyte–type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328, 155–157 (1987).

    Article  CAS  Google Scholar 

  31. Mi, H. & Barres, B.A. Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J. Neurosci. 19, 1049–1061 (1999).

    Article  CAS  Google Scholar 

  32. Barres, B.A. et al. Cell death in the oligodendrocyte lineage. J. Neurobiol. 23, 1221–1230 (1992).

    Article  CAS  Google Scholar 

  33. Spassky, N. et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J. Neurosci. 22, 5992–6004 (2002).

    Article  CAS  Google Scholar 

  34. Darland, D.C. et al. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol. 264, 275–288 (2003).

    Article  CAS  Google Scholar 

  35. Avantaggiato, V., Orlandini, M., Acampora, D., Oliviero, S. & Simeone, A. Embryonic expression pattern of the murine figf gene, a growth factor belonging to platelet-derived growth factor/vascular endothelial growth factor family. Mech. Dev. 73, 221–224 (1998).

    Article  CAS  Google Scholar 

  36. Joukov, V. et al. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J. Biol. Chem. 273, 6599–6602 (1998).

    Article  CAS  Google Scholar 

  37. Kirkin, V. et al. Characterization of indolinones which preferentially inhibit VEGF-C- and VEGF-D-induced activation of VEGFR-3 rather than VEGFR-2. Eur. J. Biochem. 268, 5530–5540 (2001).

    Article  CAS  Google Scholar 

  38. Richardson, W.D., Pringle, N., Mosley, M.J., Westermark, B. & Dubois-Dalcq, M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53, 309–319 (1988).

    Article  CAS  Google Scholar 

  39. Noble, M., Murray, K., Stroobant, P., Waterfield, M.D. & Riddle, P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333, 560–562 (1988).

    Article  CAS  Google Scholar 

  40. Buchdunger, E. et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 295, 139–145 (2000).

    CAS  Google Scholar 

  41. Stolt, C.C. et al. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 1677–1689 (2003).

    Article  CAS  Google Scholar 

  42. Schratzberger, P. et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat. Med. 6, 405–413 (2000).

    Article  CAS  Google Scholar 

  43. Fruttiger, M. et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126, 457–467 (1999).

    CAS  PubMed  Google Scholar 

  44. Klinghoffer, R.A., Hamilton, T.G., Hoch, R. & Soriano, P. An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev. Cell 2, 103–113 (2002).

    Article  CAS  Google Scholar 

  45. Mudhar, H.S., Pollock, R.A., Wang, C., Stiles, C.D. & Richardson, W.D. PDGF and its receptors in the developing rodent retina and optic nerve. Development 118, 539–552 (1993).

    CAS  PubMed  Google Scholar 

  46. Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343 (1998).

    Article  CAS  Google Scholar 

  47. Nieuwkoop, P.J.F.J. (ed.) Normal Table of Xenopus Laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis (Garand Publishing, New York, 1994).

    Google Scholar 

  48. Shibata, T. et al. Glutamate transporter GLAST is expressed in the radial gliaastrocyte lineage of developing mouse spinal cord. J. Neurosci. 17, 9212–9219 (1997).

    Article  CAS  Google Scholar 

  49. Sun, T. et al. Cross-repressive interaction of the Olig2 and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex. J. Neurosci. 23, 9547–9556 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Williams, K. Heydon and P. Topilko for critically reading the manuscript and A. Chedotal for discussions. Glivec was provided by Novartis International AG and anti-Sox9 Ab by M. Wegner. This work was supported by Institut National de la Santé et de la Recherche Médicale (INSERM; J.-L.T., B.Z., M.-J.B., A.E.), Ministère de l'éducation nationale, de l'enseignement supérieur et de la recherche (MENESR; A.E., J.-L.T.), European Community (Lymphangiogenomics LSHG-CT-2004-503573 to K.A., P.C., A.E.), the US National Institutes of Health (R01 HL075183-02 to K.A.), the Academy of Finland (K.A., M.J.K.), the Association pour la Recherche de la Sclérose en Plaques (ARSEP) and Association Européenne contre les Leucodystrophies (ELA) (J.-L.T.), Association pour la Recherche sur la Cancer (ARC, A.E.), and the Novo Nordisk Foundation (K.A.). B.L.B was a fellow of MENESR, the Fondation Recherche Médicale (FRM) and the Ligue Française contre la Sclérose En Plaques (LFSEP). L.Y. was supported by Fondation Schlumberger. A.N was sponsored by a Marie Curie Intra-European Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Léon Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

VEGF-C requirement for neural development in Xenopus tadpoles. (PDF 631 kb)

Supplementary Fig. 2

VEGFR-3 and VEGF-C expression in the embryonic mouse brain. (PDF 1221 kb)

Supplementary Fig. 3

VEGF-C promotes oligodendrogenesis in the embryonic ventral forebrain. (PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bras, B., Barallobre, MJ., Homman-Ludiye, J. et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 9, 340–348 (2006). https://doi.org/10.1038/nn1646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing