Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterogeneity in synaptic transmission along a Drosophila larval motor axon

An Erratum to this article was published on 01 October 2005

This article has been updated

Abstract

At the Drosophila melanogaster larval neuromuscular junction (NMJ), a motor neuron releases glutamate from 30–100 boutons onto the muscle it innervates. How transmission strength is distributed among the boutons of the NMJ is unknown. To address this, we created synapcam, a version of the Ca2+ reporter Cameleon. Synapcam localizes to the postsynaptic terminal and selectively reports Ca2+ influx through glutamate receptors (GluRs) with single-impulse and single-bouton resolution. GluR-based Ca2+ signals were uniform within a given connection (that is, a given bouton/postsynaptic terminal pair) but differed considerably among connections of an NMJ. A steep gradient of transmission strength was observed along axonal branches, from weak proximal connections to strong distal ones. Presynaptic imaging showed a matching axonal gradient, with higher Ca2+ influx and exocytosis at distal boutons. The results suggest that transmission strength is mainly determined presynaptically at the level of individual boutons, possibly by one or more factors existing in a gradient.

*Note: In the version of this article initially published online, the second author’s name was misspelled. The correct spelling should be Dierk F Reiff. The error has been corrected in the HTML version of the article. This correction has been appended to the PDF and print versions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synapcam expression has no affect on NMJ development or physiology.
Figure 2: Synapcams report Ca2+ flux through GluRs as an increase in FRET.
Figure 3: Synapcam reveals transmission heterogeneity at the Drosophila NMJ.
Figure 4: Synapcam3.1 is not saturated by single stimuli to the motor axon.
Figure 5: Prolonged imaging shows the distribution of transmission strength of an NMJ.
Figure 6: A proximal-distal gradient in transmission strength.
Figure 7: Presynaptic contribution to the gradient of transmission strength.

Similar content being viewed by others

Change history

  • 04 September 2005

    Erratum PDF added and note added to XML

References

  1. Hua, J.Y. & Smith, S.J. Neural activity and the dynamics of central nervous system development. Nat. Neurosci. 7, 327–332 (2004).

    Article  CAS  Google Scholar 

  2. Constantine-Paton, M. & Cline, H.T. LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr. Opin. Neurobiol. 8, 139–148 (1998).

    Article  CAS  Google Scholar 

  3. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  Google Scholar 

  4. Liu, G. Presynaptic control of quantal size: kinetic mechanisms and implications for synaptic transmission and plasticity. Curr. Opin. Neurobiol. 13, 324–331 (2003).

    Article  CAS  Google Scholar 

  5. Oertner, T.G. Functional imaging of single synapses in brain slices. Exp. Physiol. 87, 733–736 (2002).

    Article  Google Scholar 

  6. Fetcho, J.R. & O'Malley, D.M. Imaging neuronal networks in behaving animals. Curr. Opin. Neurobiol. 7, 832–838 (1997).

    Article  CAS  Google Scholar 

  7. Murthy, V.N. Optical detection of synaptic vesicle exocytosis and endocytosis. Curr. Opin. Neurobiol. 9, 314–320 (1999).

    Article  CAS  Google Scholar 

  8. Koester, H.J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

    Article  CAS  Google Scholar 

  9. Murthy, V.N., Sejnowski, T.J. & Stevens, C.F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  Google Scholar 

  10. Koester, H.J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. (Lond.) 529, 625–646 (2000).

    Article  CAS  Google Scholar 

  11. Zito, K., Fetter, R.D., Goodman, C.S. & Isacoff, E.Y. Synaptic clustering of Fasciclin II and Shaker: Essential targeting sequences and role of Dlg. Neuron 19, 1007–1016 (1997).

    Article  CAS  Google Scholar 

  12. Tejedor, F.J. et al. Essential role for dlg in synaptic clustering of shaker K+ channels in vivo. J. Neurosci. 17, 152–159 (1997).

    Article  CAS  Google Scholar 

  13. Sorra, K.E. & Harris, K.M. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J. Neurosci. 13, 3736–3748 (1993).

    Article  CAS  Google Scholar 

  14. Atwood, H.L., Govind, C.K. & Wu, C.-F. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J. Neurobiol. 24, 1008–1024 (1993).

    Article  CAS  Google Scholar 

  15. Schuster, C.M., Davis, G.W., Fetter, R.D. & Goodman, C.S. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17, 641–654 (1996).

    Article  CAS  Google Scholar 

  16. Zito, K., Parnas, D., Fetter, R.D., Isacoff, E.Y. & Goodman, C.S. Watching a synapse grow: Noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22, 719–729 (1999).

    Article  CAS  Google Scholar 

  17. McCabe, B.D. et al. The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39, 241–254 (2003).

    Article  CAS  Google Scholar 

  18. Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    Article  CAS  Google Scholar 

  19. Marques, G. et al. The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33, 529–543 (2002).

    Article  CAS  Google Scholar 

  20. Haghighi, A.P. et al. Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39, 255–267 (2003).

    Article  CAS  Google Scholar 

  21. Chang, H., Ciani, S. & Kidokoro, Y. Ion permeation properties of the glutamate receptor channel in cultured embryonic Drosophila myotubes. J. Physiol. (Lond.) 476, 1–16 (1994).

    CAS  Google Scholar 

  22. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  23. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R.Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl. Acad. Sci. USA 96, 2135–2140 (1999).

    Article  CAS  Google Scholar 

  24. Chiba, A., Snow, P., Keshishian, H. & Hotta, Y. Fasciclin III as a synaptic target recognition molecule in Drosophila. Nature 374, 166–168 (1995).

    Article  CAS  Google Scholar 

  25. Johansen, J., Halpern, M.E., Johansen, K.M. & Keshishian, H. Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. J. Neurosci. 9, 710–725 (1989).

    Article  CAS  Google Scholar 

  26. Jia, X.X., Gorczyca, M. & Budnik, V. Ultrastructure of neuromuscular junctions in Drosophila: comparison of wild type and mutants with increased excitability. J. Neurobiol. 24, 1025–1044 (1993).

    Article  CAS  Google Scholar 

  27. Treiman, M., Caspersen, C. & Christensen, S.B. A tool coming of age: thapsigargin as an inhibitor of sarcoendoplasmic reticulum Ca2+-ATPases. Trends Pharmacol. Sci. 19, 131–135 (1998).

    Article  CAS  Google Scholar 

  28. Sullivan, K.M.C., Scott, K., Zuker, C.S. & Rubin, G.M. The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 5942–5947 (2000).

    Article  CAS  Google Scholar 

  29. Davis, G.W. & Goodman, C.S. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392, 82–86 (1998).

    Article  CAS  Google Scholar 

  30. Petersen, S.A., Fetter, R.D., Noordemeer, J.N., Goodman, C.S. & DiAntonio, A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19, 1237–1248 (1997).

    Article  CAS  Google Scholar 

  31. Marrus, S.B., Portman, S.L., Allen, M.J., Moffat, K.G. & DiAntonio, A. Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J. Neurosci. 24, 1406–1415 (2004).

    Article  CAS  Google Scholar 

  32. Qin, G. et al. Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J. Neurosci. 25, 3209–3218 (2005).

    Article  CAS  Google Scholar 

  33. DiAntonio, A., Petersen, S.A., Heckmann, M. & Goodman, C.S. Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J. Neurosci. 19, 3023–3032 (1999).

    Article  CAS  Google Scholar 

  34. Wucherpfennig, T., Wilsch-Brauninger, M. & Gonzalez-Gaitan, M. Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J. Cell Biol. 161, 609–624 (2003).

    Article  CAS  Google Scholar 

  35. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  Google Scholar 

  36. Reiff, D.F. et al. In vivo performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25, 4766–4778 (2005).

    Article  CAS  Google Scholar 

  37. Miesenbock, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  Google Scholar 

  38. Atwood, H.L. Variation in physiological properties of crustacean motor synapses. Nature 215, 57–58 (1967).

    Article  CAS  Google Scholar 

  39. Lavidis, N.A. & Bennett, M.R. Probabilistic secretion of quanta from visualized sympathetic nerve varicosities in mouse vas deferens. J. Physiol. (Lond.) 454, 9–26 (1992).

    Article  CAS  Google Scholar 

  40. Bennett, M.R., Jones, P. & Lavidis, N.A. The probability of quantal secretion along visualized terminal branches at amphibian (Bufo marinus) neuromuscular synapses. J. Physiol. (Lond.) 379, 257–274 (1986).

    Article  CAS  Google Scholar 

  41. Bittner, G.D. Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J. Gen. Physiol. 51, 731–758 (1968).

    Article  CAS  Google Scholar 

  42. Cooper, R.L., Harrington, C.C., Marin, L. & Atwood, H.L. Quantal release at visualized terminals of a crayfish motor axon: intraterminal and regional differences. J. Comp. Neurol. 375, 583–600 (1996).

    Article  CAS  Google Scholar 

  43. Robitaille, R. & Tremblay, J.P. Non-uniform responses to Ca2+ along the frog neuromuscular junction: effects on the probability of spontaneous and evoked transmitter release. Neuroscience 40, 571–585 (1991).

    Article  CAS  Google Scholar 

  44. Davis, G.W., DiAntonio, A., Petersen, S.A. & Goodman, C.S. Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila. Neuron 20, 305–315 (1998).

    Article  CAS  Google Scholar 

  45. Reiff, D.F., Thiel, P.R. & Schuster, C.M. Differential regulation of active zone density during long-term strengthening of Drosophila neuromuscular junctions. J. Neurosci. 22, 9399–9409 (2002).

    Article  CAS  Google Scholar 

  46. Quigley, P.A., Msghina, M., Govind, C.K. & Atwood, H.L. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1–43. J. Neurophysiol. 81, 356–370 (1999).

    Article  CAS  Google Scholar 

  47. Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G.W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26, 371–382 (2000).

    Article  CAS  Google Scholar 

  48. Ruiz-Canada, C. et al. New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Neuron 42, 567–580 (2004).

    Article  CAS  Google Scholar 

  49. Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J. & Wu, C.-F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. A 175, 179–191 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Raymond for developing the Bouton Project software; K. Zito for initial cloning and transfection of synapcam3.1 and M.-M. Poo, R. Zucker and M. Neff for comments on the manuscript. This work was funded by a US National Institutes of Health grant (E.Y.I. and C.S.G.), the Max-Planck-Society (D.F.R. and A.B.) and the Howard Hughes Medical Institute (G.G. and C.S.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Y Isacoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The relative increase in ΔFRET or decrease in current after two stimuli is smaller for postsynaptic terminals and NMJs with higher transmission. (PDF 267 kb)

Supplementary Fig. 2

GluR identity and distribution cannot explain the proximal-distal gradient of transmission strength. (PDF 4397 kb)

Supplementary Fig. 3

Differences between boutons in the number of active zone patches or the total quantity of an active zone marker cannot explain the proximal-distal gradient of transmission strength. (PDF 340 kb)

Supplementary Fig. 4

Possible origins for a presynaptic gradient of transmission strength. (PDF 553 kb)

Supplementary Table 1

Recording conditions and synapcam3.1 expression do not affect the physiological properties of the NMJ. (PDF 77 kb)

Supplementary Methods (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, G., Reiff, D., Agarwal, G. et al. Heterogeneity in synaptic transmission along a Drosophila larval motor axon. Nat Neurosci 8, 1188–1196 (2005). https://doi.org/10.1038/nn1526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing