Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biophysical mechanisms underlying olfactory receptor neuron dynamics

Abstract

The responses of olfactory receptor neurons (ORNs) to odors have complex dynamics. Using genetics and pharmacology, we found that these dynamics in Drosophila ORNs could be separated into sequential steps, corresponding to transduction and spike generation. Each of these steps contributed distinct dynamics. Transduction dynamics could be largely explained by a simple kinetic model of ligand-receptor interactions, together with an adaptive feedback mechanism that slows transduction onset. Spiking dynamics were well described by a differentiating linear filter that was stereotyped across odors and cells. Genetic knock-down of sodium channels reshaped this filter, implying that it arises from the regulated balance of intrinsic conductances in ORNs. Complex responses can be understood as a consequence of how the stereotyped spike filter interacts with odor- and receptor-specific transduction dynamics. However, in the presence of rapidly fluctuating natural stimuli, spiking simply increases the speed and sensitivity of encoding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal patterns of ORN spiking are cell and odor dependent.
Figure 2: Field potentials and spikes can be isolated from single ORNs.
Figure 3: Filter models describe transformations between stimulus, LFP and spikes.
Figure 4: Odor and cell dependence of transduction and spiking dynamics.
Figure 5: Knocking down DmNav makes the LFP-to-spiking transformation more differentiating.
Figure 6: Dynamics of transduction and adaptation.
Figure 7: Cross-adaptation between co-expressed odorant receptors.
Figure 8: Encoding the dynamics of natural odor plumes.

Similar content being viewed by others

References

  1. Murlis, J., Elkinton, J.S. & Cardé, R.T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).

    Article  Google Scholar 

  2. Vickers, N.J., Christensen, T.A., Baker, T.C. & Hildebrand, J.G. Odour-plume dynamics influence the brain's olfactory code. Nature 410, 466–470 (2001).

    Article  CAS  Google Scholar 

  3. Kang, J. & Caprio, J. Electrophysiological responses of single olfactory bulb neurons to binary mixtures of amino acids in the channel catfish, Ictalurus punctatus. J. Neurophysiol. 74, 1435–1443 (1995).

    Article  CAS  Google Scholar 

  4. de Bruyne, M., Clyne, P.J. & Carlson, J.R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532 (1999).

    Article  CAS  Google Scholar 

  5. Reisert, J. & Matthews, H.R. Adaptation of the odour-induced response in frog olfactory receptor cells. J. Physiol. (Lond.) 519, 801–813 (1999).

    Article  CAS  Google Scholar 

  6. de Bruyne, M., Foster, K. & Carlson, J.R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    Article  CAS  Google Scholar 

  7. Störtkuhl, K.F., Hovemann, B.T. & Carlson, J.R. Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila. J. Neurosci. 19, 4839–4846 (1999).

    Article  Google Scholar 

  8. Gu, Y., Lucas, P. & Rospars, J.P. Computational model of the insect pheromone transduction cascade. PLOS Comput. Biol. 5, e1000321 (2009).

    Article  Google Scholar 

  9. Flecke, C. & Stengl, M. Octopamine and tyramine modulate pheromone-sensitive olfactory sensilla of the hawkmoth Manduca sexta in a time-dependent manner. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195, 529–545 (2009).

    Article  CAS  Google Scholar 

  10. Kaissling, K.E. Flux detectors versus concentration detectors: two types of chemoreceptors. Chem. Senses 23, 99–111 (1998).

    Article  CAS  Google Scholar 

  11. Hallem, E.A., Ho, M.G. & Carlson, J.R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004).

    Article  CAS  Google Scholar 

  12. Sato, K. et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002–1006 (2008).

    Article  CAS  Google Scholar 

  13. Benton, R., Sachse, S., Michnick, S.W. & Vosshall, L.B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4, e20 (2006).

    Article  Google Scholar 

  14. Yao, C.A. & Carlson, J.R. Role of G proteins in odor-sensing and CO2-sensing neurons in Drosophila. J. Neurosci. 30, 4562–4572 (2010).

    Article  CAS  Google Scholar 

  15. Wicher, D. et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011 (2008).

    Article  CAS  Google Scholar 

  16. Schuckel, J., Torkkeli, P.H. & French, A.S. Two interacting olfactory transduction mechanisms have linked polarities and dynamics in Drosophila melanogaster antennal basiconic sensilla neurons. J. Neurophysiol. 102, 214–223 (2009).

    Article  CAS  Google Scholar 

  17. Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A. & Carlson, J.R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003).

    Article  CAS  Google Scholar 

  18. Goldman, A.L., van der Goes van Naters, W., Lessing, D., Warr, C.G. & Carlson, J.R. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661–666 (2005).

    Article  CAS  Google Scholar 

  19. Johnston, D. & Wu, S.M.-S. Foundations of Cellular Neurophysiology (MIT Press, 1995).

  20. Kaissling, K.E. Chemo-electrical transduction in insect olfactory receptors. Annu. Rev. Neurosci. 9, 121–145 (1986).

    Article  CAS  Google Scholar 

  21. Schneider, D. Insect olfaction: deciphering system for chemical messages. Science 163, 1031–1037 (1969).

    Article  CAS  Google Scholar 

  22. Baccus, S.A. & Meister, M. Fast and slow contrast adaptation in retinal circuitry. Neuron 36, 909–919 (2002).

    Article  CAS  Google Scholar 

  23. Nagel, K.I. & Doupe, A.J. Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51, 845–859 (2006).

    Article  CAS  Google Scholar 

  24. Kim, A.J., Lazar, A.A. & Slutskiy, Y.B. System identification of Drosophila olfactory sensory neurons. J. Comput. Neurosci. published online doi:10.1007/s10827-010-0265-0 (21 August 2010).

  25. Lundstrom, B.N., Hong, S., Higgs, M.H. & Fairhall, A.L. Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space. Neural Comput. 20, 1239–1260 (2008).

    Article  Google Scholar 

  26. Hallem, E.A. & Carlson, J.R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    Article  CAS  Google Scholar 

  27. Geffen, M.N., Broome, B.M., Laurent, G. & Meister, M. Neural encoding of rapidly fluctuating odors. Neuron 61, 570–586 (2009).

    Article  CAS  Google Scholar 

  28. Rushton, W.A. Pigments and signals in colour vision. J. Physiol. 220, 1P–P (1972).

    Article  CAS  Google Scholar 

  29. Laurent, G., Wehr, M. & Davidowitz, H. Temporal representations of odors in an olfactory network. J. Neurosci. 16, 3837–3847 (1996).

    Article  CAS  Google Scholar 

  30. Daly, K.C., Wright, G.A. & Smith, B.H. Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. J. Neurophysiol. 92, 236–254 (2004).

    Article  Google Scholar 

  31. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003).

    Article  CAS  Google Scholar 

  32. Raman, B., Joseph, J., Tang, J. & Stopfer, M. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J. Neurosci. 30, 1994–2006 (2010).

    Article  CAS  Google Scholar 

  33. Soo, F.S., Detwiler, P.B. & Rieke, F. Light adaptation in salamander L-cone photoreceptors. J. Neurosci. 28, 1331–1342 (2008).

    Article  CAS  Google Scholar 

  34. Deshpande, M., Venkatesh, K., Rodrigues, V. & Hasan, G. The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation in Drosophila antennae. J. Neurobiol. 43, 282–288 (2000).

    Article  CAS  Google Scholar 

  35. Neuhaus, E.M. et al. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat. Neurosci. 8, 15–17 (2005).

    Article  CAS  Google Scholar 

  36. Liu, M., Chen, T.Y., Ahamed, B., Li, J. & Yau, K.W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide–gated cation channel. Science 266, 1348–1354 (1994).

    Article  CAS  Google Scholar 

  37. Kaissling, K.E., Zack Strausfeld, C. & Rumbo, E. Adaptation processes in insect olfactory receptors. Mechanisms and behavioral significance. Ann. NY Acad. Sci. 510, 104–112 (1987).

    Article  CAS  Google Scholar 

  38. Reyes, A.D., Rubel, E.W. & Spain, W.J. Membrane properties underlying the firing of neurons in the avian cochlear nucleus. J. Neurosci. 14, 5352–5364 (1994).

    Article  CAS  Google Scholar 

  39. Rauch, A., La Camera, G., Luscher, H.R., Senn, W. & Fusi, S. Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo–like input currents. J. Neurophysiol. 90, 1598–1612 (2003).

    Article  Google Scholar 

  40. Famulare, M. & Fairhall, A. Feature selection in simple neurons: how coding depends on spiking dynamics. Neural Comput. 22, 581–598 (2010).

    Article  Google Scholar 

  41. Bhandawat, V., Olsen, S.R., Schlief, M.L., Gouwens, N.W. & Wilson, R.I. Sensory processing in the Drosophila antennal lobe increases the reliability and separability of ensemble odor representations. Nat. Neurosci. 10, 1474–1482 (2007).

    Article  CAS  Google Scholar 

  42. Field, G.D., Sampath, A.P. & Rieke, F. Retinal processing near absolute threshold: from behavior to mechanism. Annu. Rev. Physiol. 67, 491–514 (2005).

    Article  CAS  Google Scholar 

  43. Spors, H., Wachowiak, M., Cohen, L.B. & Friedrich, R.W. Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb. J. Neurosci. 26, 1247–1259 (2006).

    Article  CAS  Google Scholar 

  44. Carey, R.M., Verhagen, J.V., Wesson, D.W., Pirez, N. & Wachowiak, M. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. J. Neurophysiol. 101, 1073–1088 (2009).

    Article  Google Scholar 

  45. Bhandawat, V., Reisert, J. & Yau, K.W. Elementary response of olfactory receptor neurons to odorants. Science 308, 1931–1934 (2005).

    Article  CAS  Google Scholar 

  46. Almaas, T.J., Christensen, T.A. & Mustaparta, H. Chemical communication in heliothine moths. 1. Antennal receptor neurons encode several features of intraspecific and interspecific odorants in the male corn-earworm moth Helicoverpa zea. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 169, 249–258 (1991).

    Article  Google Scholar 

  47. Olsen, S.R., Bhandawat, V. & Wilson, R.I. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54, 89–103 (2007).

    Article  CAS  Google Scholar 

  48. Sweeney, L.B. et al. Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon-axon interactions. Neuron 53, 185–200 (2007).

    Article  CAS  Google Scholar 

  49. Couto, A., Alenius, M. & Dickson, B.J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005).

    Article  CAS  Google Scholar 

  50. Budick, S.A. & Dickinson, M.H. Free-flight responses of Drosophila melanogaster to attractive odors. J. Exp. Biol. 209, 3001–3017 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J.R. Carlson for Or33c-Gal4, Or46a-Gal4, UAS-Or47a and UAS-Or47b, B.J. Dickson for Or59c-Gal4 and Or42a-Gal4, L. Luo for pebbled-Gal, L. Stevens for UAS-DTl, J.S. Bell, J.B. Cohen, A.L. Fairhall, M. Wachowiak and G. Yellen for conversations, and A.W. Liu, M. Meister, D. Schoppik and members of the Wilson laboratory for feedback on the manuscript. This work was funded by a Helen Hay Whitney Foundation Fellowship (to K.I.N.), a grant from the US National Institutes of Health (R01DC008174), a McKnight Scholar Award and a Beckman Young Investigator Award (to R.I.W.), and a Howard Hughes Medical Institute Early Career Scientist award (to R.I.W.).

Author information

Authors and Affiliations

Authors

Contributions

K.I.N. performed the experiments and analyzed the data. K.I.N. and R.I.W. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Rachel I Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 5876 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, K., Wilson, R. Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat Neurosci 14, 208–216 (2011). https://doi.org/10.1038/nn.2725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2725

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing