Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites

Abstract

The material class of skutterudites is believed to have strong potential for thermoelectric application due to the very low thermal conductivity of the filled structures. It is generally assumed that the atoms filling the skutterudite cages act as ‘rattlers’ and essentially induce a disordered lattice dynamics referred to as ‘phonon glass’. Here, we present neutron spectroscopy experiments and ab initio computational work on phonons in LaFe4Sb12 and CeFe4Sb12. Our results give unequivocal evidence of essentially temperature-independent lattice dynamics with well-defined phase relations between guest and host dynamics, indicative of a quasi-harmonic coupling between the guests and the host lattice. These conclusions are in disagreement with the ‘phonon glass’ paradigm based on individual ‘rattling’ of the guest atoms. These findings should have an essential impact on the design and improvement of thermoelectric materials and on the development of microscopic models needed for these efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic presentation of the conceptual ‘rattling’ mode framework referred to in this article.
Figure 2: Measured powder-averaged response of a LaFe4Sb12 sample.
Figure 3: Calculated powder-averaged response of a LaFe4Sb12 sample.
Figure 4: Momentum-averaged spectral density of LaFe4Sb12 and CeFe4Sb12.
Figure 5: Energy transfer dependence of the experimental response compared with PALD.
Figure 6: Momentum transfer dependence of the experimental response compared with PALD.

Similar content being viewed by others

References

  1. Slack, G. A. & Tsoukala, V. G. Some properties of semiconducting IrSb3 . J. Appl. Phys. 76, 1665–1671 (1994).

    Article  CAS  Google Scholar 

  2. Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407–440 (CRC Press, Boca Raton, 1995).

    Google Scholar 

  3. Meisner, G. P., Morelli, D. T., Hu, S., Yang, J. & Uher, C. Structure and lattice thermal conductivity of fractionally filled skutterudites: Solid solutions of fully filled and unfilled end members. Phys. Rev. Lett. 80, 3551–3554 (1998).

    Article  CAS  Google Scholar 

  4. Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V. & Thompson, J. R. Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 56, 15081–15089 (1997).

    Article  CAS  Google Scholar 

  5. Tse, J. S. & Klug, D. D. in Thermoelectrics Handbook—Macro to Nano (ed. Rowe, D. M.) 8-1–8-25 (CRC Taylor and Francis, Boca Raton, 2006).

    Google Scholar 

  6. Uher, C. in Thermoelectrics Handbook—Macro to Nano (ed. Rowe, D. M.) 34-1–34-17 (CRC Taylor and Francis, Boca Raton, 2006).

    Google Scholar 

  7. Keppens, V. et al. Localized vibrational modes in metallic solids. Nature 395, 876–878 (1998).

    Article  CAS  Google Scholar 

  8. Mihaly, L. Crystal cages for clean coolers. Nature 395, 839–841 (1998).

    Article  CAS  Google Scholar 

  9. Hermann, R. P. et al. Einstein oscillators in thallium filled antimony skutterudites. Phys. Rev. Lett. 90, 135505 (2003).

    Article  Google Scholar 

  10. Viennois, R. et al. Inelastic neutron scattering experiments on antimony-based filled skutterudites. Physica B 350, e403–e405 (2004).

    Article  CAS  Google Scholar 

  11. Viennois, R. et al. Experimental determination of the phonon density of states in filled skutterudites—evidence of a localised mode of the filling atom. Phys. Chem. Chem. Phys. 7, 1617–1619 (2005).

    Article  CAS  Google Scholar 

  12. Long, G. J. et al. Strongly decoupled europium and iron vibrational modes in filled skutterudites. Phys. Rev. B 71, 140302(R) (2005).

    Article  Google Scholar 

  13. Hermann, R. P., Grandjean, F. & Long, G. J. Einstein oscillators that impede thermal transport. Am. J. Phys. 73, 110–118 (2005).

    Article  CAS  Google Scholar 

  14. Feldman, J. L. et al. Lattice vibrations in La(Ce)Fe4Sb12 and CoSb3: Inelastic neutron scattering and theory. Phys. Rev. B 73, 014306 (2006).

    Article  Google Scholar 

  15. Wille, H.-C. et al. Antimony vibrations in skutterudites probed by 121Sb nuclear inelastic scattering. Phys. Rev. B 76, 140301(R) (2007).

    Article  Google Scholar 

  16. Lee, C. H., Hase, I., Sugawara, H., Yoshizawa, H. & Sato, H. Low-lying optical phonon modes in the filled skutterudite CeRu4Sb12 . J. Phys. Soc. Japan 75, 123602 (2006).

    Article  Google Scholar 

  17. Yang, C. P. et al. Phonon dispersion curves in CeOs4Sb12 . J. Phys. Condens. Matter 19, 226214–226218 (2007).

    Article  Google Scholar 

  18. Iwasa, K, Kohgi, M, Sugawara, H & Sato, H. Large softening of acoustic phonons in PrOs4Sb12 . Physica B 378–380, 194–196 (2006).

    Article  Google Scholar 

  19. Chazallon, B., Itoh, H., Koza, M., Kuhs, W. F. & Schober, H. Anharmonicity and guest–host coupling in clathrate hydrates. Phys. Chem. Chem. Phys. 4, 4809–4816 (2002).

    Article  CAS  Google Scholar 

  20. Carpenter, J. M. & Pelizzari, C. A. Inelastic neutron scattering from amorphous solids. I. Calculation of the scattering law for model structures. Phys. Rev. B 12, 2391–2396 (1975).

    Article  Google Scholar 

  21. Carpenter, J. M. & Pelizzari, C. A. Inelastic neutron scattering from amorphous solids. II. Interpretation of measurements. Phys. Rev. B 12, 2397–2401 (1975).

    Article  Google Scholar 

  22. Buchenau, U. Inelastic neutron scattering from low-frequency vibrational excitations in amorphous solids. Z. Phys. B 58, 181–186 (1985).

    Article  CAS  Google Scholar 

  23. Feldman, J. L., Singh, D. J., Kendziora, C., Mandrus, D. & Sales, B. C. Lattice dynamics of filled skutterudites: La(Fe,Co)4Sb12 . Phys. Rev. B 68, 094301 (2003).

    Article  Google Scholar 

  24. Chapon, L., Ravot, D. & Tedenac, J. C. Nickel-substituted skutterudites: synthesis, structural and electrical properties. J. Alloys Compounds 282, 59–63 (1999).

    Article  Google Scholar 

  25. Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  26. Parlinski, K. Neutrons and numerical methods N2M. in Am. Inst. Phys. Conf. Proc. 479 (eds Johnson, M. R., Kearley, G. J. & Buttner, H. G.) 121–126 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Marek Koza.

Supplementary information

Supplementary Information

Supplementary Information (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koza, M., Johnson, M., Viennois, R. et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nature Mater 7, 805–810 (2008). https://doi.org/10.1038/nmat2260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing