Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How single conjugated polymer molecules respond to electric fields

Abstract

Conjugated polymers find applications in a range of devices such as light-emitting diodes, field-effect transistors and solar cells. The elementary electronic response of these semiconductors to electric fields is understood in terms of nanoscale perturbations of charge density. We demonstrate a general breaking of spatial charge symmetry by considering the linear Stark effect in the emission of single chromophores on individual chains. Spectral shifts of several nanometres occur due to effective dipoles exceeding 10 D. Although the electric field does not ionize the exciton, some molecules exhibit field-induced intensity modulations. This quenching illustrates the equivalence of charge symmetry breaking and polaron-pair or charge-transfer-state formation, and provides a microscopic picture of permanent charging, which leads to doping and exciton dissociation in actual devices. In addition to using this tuneable emission in single-photon electro-optic modulators, hysteresis in the Stark shift suggests a route to designing nanoscale memory elements such as molecular switches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electric-field modulation of the fluorescence spectrum of a single chromophore on an MEH-PPV polymer molecule at 5 K.
Figure 2: Electric-field modulation of MEH-PPV single-molecule emission.
Figure 3: Effect of the plane of polarization of the incident and emitted radiation relative to the field vector on the electric-field response of two different materials.
Figure 4: Linear and hysteretic field response of the emission of single-polymer molecules.
Figure 5: Field modulation of the single-molecule emission intensity due to charge-induced exciton quenching.

Similar content being viewed by others

References

  1. Malliaras, G. & Friend, R. An organic electronics primer. Phys. Today 58, 53–58 (2005).

    Article  Google Scholar 

  2. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  Google Scholar 

  3. Hagler, T. W., Pakbaz, K. & Heeger, A. J. Polarized-electroabsorption spectroscopy of a soluble derivative of poly(p-phenylenevinylene) oriented by gel processing in polyethylene-polarization anisotropy, the off-axis dipole-moment, and excited-state delocalization. Phys. Rev. B 49, 10968–10975 (1994).

    Article  Google Scholar 

  4. Weiser, G. Stark-effect of one-dimensional Wannier excitons in polydiacetylene single-crystals. Phys. Rev. B 45, 14076–14085 (1992).

    Article  Google Scholar 

  5. Schindler, F., Lupton, J. M., Feldmann, J. & Scherf, U. A universal picture of chromophores in pi-conjugated polymers derived from single-molecule spectroscopy. Proc. Natl Acad. Sci. USA 101, 14695–14700 (2004).

    Article  Google Scholar 

  6. Schwartz, B. J. Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 54, 141–172 (2003).

    Article  Google Scholar 

  7. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers 2nd edn (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  8. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

    Article  Google Scholar 

  9. VandenBout, D. A. et al. Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science 277, 1074–1077 (1997).

    Article  Google Scholar 

  10. Huser, T., Yan, M. & Rothberg, L. J. Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. Proc. Natl Acad. Sci. USA 97, 11187–11191 (2000).

    Article  Google Scholar 

  11. Müller, J. G. et al. Linewidth-limited energy transfer in single conjugated polymer molecules. Phys. Rev. Lett. 91, 267403 (2003).

    Article  Google Scholar 

  12. Schindler, F. & Lupton, J. M. Single chromophore spectroscopy of MEH-PPV: Homing-in on the elementary emissive species in conjugated polymers. ChemPhysChem 6, 926–934 (2005).

    Article  Google Scholar 

  13. Becker, K. & Lupton, J. M. Dual species emission from single polyfluorene molecules: Signatures of stress-induced planarization of single polymer chains. J. Am. Chem. Soc. 127, 7306–7307 (2005).

    Article  Google Scholar 

  14. Schindler, F. et al. Counting chromophores in conjugated polymers. Angew. Chem. Int. Edn 44, 1520–1525 (2005).

    Article  Google Scholar 

  15. Müller, J. G., Lupton, J. M., Feldmann, J., Lemmer, U. & Scherf, U. Ultrafast intramolecular energy transfer in single conjugated polymer chains probed by polarized single chromophore spectroscopy. Appl. Phys. Lett. 84, 1183–1185 (2004).

    Article  Google Scholar 

  16. Rohlfing, F. & Bradley, D. D. C. Non-linear Stark effect in polyazomethine and poly(p-phenylene-vinylene): The interconnection of chemical and electronic structure. Chem. Phys. 227, 133–151 (1998).

    Article  Google Scholar 

  17. Liess, M. et al. Electroabsorption spectroscopy of luminescent and nonluminescent pi-conjugated polymers. Phys. Rev. B 56, 15712–15724 (1997).

    Article  Google Scholar 

  18. Weiser, G. Comparative electroabsorption studies of organic and inorganic solids. J. Lumin. 110, 189–199 (2004).

    Article  Google Scholar 

  19. Gelinck, G. H. et al. Measuring the size of excitons on isolated phenylene-vinylene chains: From dimers to polymers. Phys. Rev. B 62, 1489–1491 (2000).

    Article  Google Scholar 

  20. Harrison, M. G. et al. Electro-optical studies of a soluble conjugated polymer with particularly low intrachain disorder. Phys. Rev. B 60, 8650–8658 (1999).

    Article  Google Scholar 

  21. Chin, B.-C., Misawa, K., Masuda, T. & Kobayashi, T. Large static dipole moment in substituted polyacetylenes obtained by electroabsorption. Chem. Phys. Lett. 318, 499–504 (2000).

    Article  Google Scholar 

  22. Leng, J. M. et al. Optical probes of excited-states in poly(p-phenylenevinylene). Phys. Rev. Lett. 72, 156–159 (1994).

    Article  Google Scholar 

  23. Orrit, M., Bernard, J., Zumbusch, A. & Personov, R. I. Stark effect on single molecules in a polymer matrix. Chem. Phys. Lett. 196, 595–600 (1992).

    Article  Google Scholar 

  24. Wild, U. P., Güttler, F., Pirotta, M. & Renn, A. Single molecule spectroscopy—Stark-effect of pentacene in para-terphenyl. Chem. Phys. Lett. 193, 451–455 (1992).

    Article  Google Scholar 

  25. Kulzer, F., Matzke, R., Bräuchle, C. & Basché, T. Nonphotochemical hole burning investigated at the single-molecule level: Stark effect measurements on the original and photoproduct state. J. Phys. Chem. A 103, 2408–2411 (1999).

    Article  Google Scholar 

  26. Bauer, M. & Kador, L. Electric-field effects of two-level systems observed with single-molecule spectroscopy. J. Chem. Phys. 118, 9069–9072 (2003).

    Article  Google Scholar 

  27. Empedocles, S. A. & Bawendi, M. G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  Google Scholar 

  28. Müller, J. et al. Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Lett. 5, 2044–2049 (2005).

    Article  Google Scholar 

  29. Rothenberg, E., Kazes, M., Shaviv, E. & Banin, U. Electric field induced switching of the fluorescence of single semiconductor quantum rods. Nano Lett. 5, 1581–1586 (2005).

    Article  Google Scholar 

  30. Bogner, U., Schatz, P., Seel, R. & Maier, M. Electric-field-induced level shifts of perylene in amorphous solids determined by persistent hole-burning spectroscopy. Chem. Phys. Lett. 102, 267–271 (1983).

    Article  Google Scholar 

  31. Kador, L., Haarer, D. & Personov, R. Stark-effect of polar and unpolar dye molecules in amorphous hosts, studied via persistent spectral hole burning. J. Chem. Phys. 86, 5300–5307 (1987).

    Article  Google Scholar 

  32. Meixner, A. J., Renn, A., Bucher, S. E. & Wild, U. P. Spectral hole burning in glasses and polymer-films—the Stark-effect. J. Phys. Chem. 90, 6777–6785 (1986).

    Article  Google Scholar 

  33. Brédas, J. L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture. Chem. Rev. 104, 4971–5003 (2004).

    Article  Google Scholar 

  34. Heun, S. et al. Conformational effects in poly(p-phenylene vinylene)s revealed by low-temperature site-selective fluorescence. J. Phys. Condens. Matter 5, 247–260 (1993).

    Article  Google Scholar 

  35. Wood, T. H. et al. Electric-field screening by photogenerated holes in multiple quantum-wells—a new mechanism for absorption saturation. Appl. Phys. Lett. 57, 1081–1083 (1990).

    Article  Google Scholar 

  36. Kersting, R. et al. Ultrafast field-induced dissociation of excitons in conjugated polymers. Phys. Rev. Lett. 73, 1440–1443 (1994).

    Article  Google Scholar 

  37. Reufer, M. et al. Spin-conserving carrier recombination in conjugated polymers. Nature Mater. 4, 340–346 (2005).

    Article  Google Scholar 

  38. Gartstein, Y. N., Rice, M. J. & Conwell, E. M. Charge-conjugation symmetry-breaking and the absorption-spectra of polyphenylenes. Phys. Rev. B 51, 5546–5549 (1995).

    Article  Google Scholar 

  39. Park, S. J., Gesquiere, A. J., Yu, J. & Barbara, P. F. Charge injection and photooxidation of single conjugated polymer molecules. J. Am. Chem. Soc. 126, 4116–4117 (2004).

    Article  Google Scholar 

  40. Zondervan, R., Kulzer, F., Orlinskii, S. B. & Orrit, M. Photoblinking of rhodamine 6G in poly(vinyl alcohol): Radical dark state formed through the triplet. J. Phys. Chem. A 107, 6770–6776 (2003).

    Article  Google Scholar 

  41. List, E. J. W. et al. Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study. Phys. Rev. B 64, 155204 (2001).

    Article  Google Scholar 

  42. McNeill, J. D., O’Connor, D. B., Adams, D. M., Barbara, P. F. & Kammer, S. B. Field-induced photoluminescence modulation of MEH-PPV under near-field optical excitation. J. Phys. Chem. B 105, 76–82 (2001).

    Article  Google Scholar 

  43. Scheblykin, I. et al. Photoluminescence intensity fluctuations and electric-field-induced photoluminescence quenching in individual nanoclusters of poly(phenylenevinylene). ChemPhysChem 4, 260–267 (2003).

    Article  Google Scholar 

  44. Vallée, R. A. L., Van Der Auweraer, M., De Schryver, F. C., Beljonne, D. & Orrit, M. A microscopic model for the fluctuations of local field and spontaneous emission of single molecules in disordered media. ChemPhysChem 6, 81–91 (2005).

    Article  Google Scholar 

  45. Grell, M., Bradley, D. D. C., Ungar, G., Hill, J. & Whitehead, K. S. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 32, 5810–5817 (1999).

    Article  Google Scholar 

  46. Müller, J. G., Lemmer, U., Feldmann, J. & Scherf, U. Precursor states for charge carrier generation in conjugated polymers probed by ultrafast spectroscopy. Phys. Rev. Lett. 88, 147401 (2002).

    Article  Google Scholar 

  47. Arkhipov, V. I., Emelianova, E. V. & Bässler, H. Hot exciton dissociation in a conjugated polymer. Phys. Rev. Lett. 82, 1321–1324 (1999).

    Article  Google Scholar 

  48. Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002).

    Article  Google Scholar 

  49. Sartori, S. S. et al. Host matrix dependence on the photophysical properties of individual conjugated polymer chains. Macromolecules 36, 500–507 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to W. Stadler, C. Holopirek and A. Helfrich for technical assistance as well as to the Deutsche Forschungsgemeinschaft for financial support through the Sonderforschungsbereich 486 and the Gottfried Wilhelm Leibniz award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Lupton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, equations and figures S1 and S2 (PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindler, F., Lupton, J., Müller, J. et al. How single conjugated polymer molecules respond to electric fields. Nature Mater 5, 141–146 (2006). https://doi.org/10.1038/nmat1549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing