Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease

Abstract

Although the deleterious vasoconstrictive effects of cell-free, hemoglobin-based blood substitutes have been appreciated, the systemic effects of chronic hemolysis on nitric oxide bioavailability have not been considered or quantified. Central to this investigation is the understanding that nitric oxide reacts at least 1,000 times more rapidly with free hemoglobin solutions than with erythrocytes. We hypothesized that decompartmentalization of hemoglobin into plasma would divert nitric oxide from homeostatic vascular function. We demonstrate here that plasma from patients with sickle-cell disease contains cell-free ferrous hemoglobin, which stoichiometrically consumes micromolar quantities of nitric oxide and abrogates forearm blood flow responses to nitric oxide donor infusions. Therapies that inactivate plasma hemoglobin by oxidation or nitric oxide ligation restore nitric oxide bioavailability. Decompartmentalization of hemoglobin and subsequent dioxygenation of nitric oxide may explain the vascular complications shared by acute and chronic hemolytic disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasma of patients with sickle-cell disease contains elevated hemoglobin and heme and consumes micromolar concentrations of NO.
Figure 2: Plasma oxyhemoglobin accounts for NO consumption.
Figure 3: Plasma hemoglobin limits NO bioactivity in vivo.
Figure 4: Inhaled NO reduces plasma NO consumption by oxidizing and nitrosylating hemoglobin.
Figure 5: Delivery of NO gas by inhalation reacts with plasma hemoglobin to form plasma methemoglobin and plasma iron–nitrosylhemoglobin and substantially reduces the ability of plasma to consume NO.

Similar content being viewed by others

References

  1. Eich, R.F. et al. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35, 6976–6983 (1996).

    Article  CAS  Google Scholar 

  2. Herold, S., Exner, M. & Nauser, T. Kinetic and mechanistic studies of the NO-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry 40, 3385–3395 (2001).

    Article  CAS  Google Scholar 

  3. Gibson, Q. & Roughton, F.J.W. The kinetics and equilibria of the reactions of nitric oxide with sheep hemoglobin. J. Physiol. (Lond). 136, 507–526 (1957).

    Article  CAS  Google Scholar 

  4. Cassoly, R. & Gibson, Q. Conformation, co-operativity and ligand binding in human hemoglobin. J. Mol. Biol. 91, 301–313 (1975).

    Article  CAS  Google Scholar 

  5. Carlsen, E. & Comroe, J.H. The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J. Gen. Physiol. 42, 83–107 (1958).

    Article  CAS  Google Scholar 

  6. Liu, X. et al. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273, 18709–18713 (1998).

    Article  CAS  Google Scholar 

  7. Lancaster, J.R. Jr. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1, 18–30 (1997).

    Article  CAS  Google Scholar 

  8. Vaughn, M.W., Kuo, L. & Liao, J.C. Effective diffusion distance of nitric oxide in the microcirculation. Am. J. Physiol. 274, H1705–H1714 (1998).

    CAS  PubMed  Google Scholar 

  9. Hess, J.R., MacDonald, V.W. & Brinkley, W.W. Systemic and pulmonary hypertension after resuscitation with cell-free hemoglobin. J. Appl. Physiol. 74, 1769–1778 (1993).

    Article  CAS  Google Scholar 

  10. Lee, R., Neya, K., Svizzero, T.A. & Vlahakes, G.J. Limitations of the efficacy of hemoglobin-based oxygen-carrying solutions. J. Appl. Physiol. 79, 236–242 (1995).

    Article  CAS  Google Scholar 

  11. de Figueiredo, L.F. et al. Pulmonary hypertension and systemic vasoconstriction may offset the benefits of acellular hemoglobin blood substitutes. J. Trauma 42, 847–856 (1997).

    Article  CAS  Google Scholar 

  12. Vogel, W.M., Dennis, R.C., Cassidy, G., Apstein, C.S. & Valeri, C.R. Coronary constrictor effect of stroma-free hemoglobin solutions. Am. J. Physiol. 251, H413–H420 (1986).

    CAS  PubMed  Google Scholar 

  13. Ulatowski, J.A. et al. Regional blood flow alterations after bovine fumaryl β-crosslinked hemoglobin transfusion and nitric oxide synthase inhibition. Crit. Care Med. 24, 558–565 (1996).

    Article  CAS  Google Scholar 

  14. Murray, J.A. et al. The effects of recombinant human hemoglobin on esophageal motor functions in humans. Gastroenterology 109, 1241–1248 (1995).

    Article  CAS  Google Scholar 

  15. Sloan, E.P. et al. Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: A randomized controlled efficacy trial. JAMA 282, 1857–1864 (1999).

    Article  CAS  Google Scholar 

  16. Doherty, D.H. et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nature Biotechnol. 16, 672–676 (1998).

    Article  CAS  Google Scholar 

  17. Vaughn, M.W., Huang, K.T., Kuo, L. & Liao, J.C. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J. Biol. Chem. 275, 2342–2348 (2000).

    Article  CAS  Google Scholar 

  18. Huang, K.T. et al. Modulation of nitric oxide bioavailability by erythrocytes. Proc. Natl. Acad. Sci. USA 98, 11771–11776 (2001).

    Article  CAS  Google Scholar 

  19. Coin, J.T. & Olson, J.S. The rate of oxygen uptake by human red blood cells. J. Biol. Chem. 254, 1178–1190 (1979).

    CAS  PubMed  Google Scholar 

  20. Butler, A.R., Megson, I.L. & Wright, P.G. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim. Biophys. Acta 1425, 168–176 (1998).

    Article  CAS  Google Scholar 

  21. Liao, J.C., Hein, T.W., Vaughn, M.W., Huang, K.T. & Kuo, L. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl. Acad. Sci. USA 96, 8757–8761 (1999).

    Article  CAS  Google Scholar 

  22. Pohl, U. & Lamontagne, D. Impaired tissue perfusion after inhibition of endothelium-derived nitric oxide. Basic Res. Cardiol. 86, 97–105 (1991).

    PubMed  Google Scholar 

  23. Bensinger, T.A. & Gillette, P.N. Hemolysis in sickle-cell disease. Arch. Intern. Med. 133, 624–631 (1974).

    Article  CAS  Google Scholar 

  24. Browne, P., Shalev, O. & Hebbel, R.P. The molecular pathobiology of cell membrane iron: The sickle red cell as a model. Free Radic. Biol. Med. 24, 1040–1048 (1998).

    Article  CAS  Google Scholar 

  25. Hebbel, R.P., Morgan, W.T., Eaton, J.W. & Hedlund, B.E. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc. Natl. Acad. Sci. USA 85, 237–241 (1988).

    Article  CAS  Google Scholar 

  26. Naumann, H.N., Diggs, L.W., Barreras, L. & Williams, B.J. Plasma hemoglobin and hemoglobin fractions in sickle cell crisis. Am. J. Clin. Pathol. 56, 137–147 (1971).

    Article  CAS  Google Scholar 

  27. Kaul, D.K. & Hebbel, R.P. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J. Clin. Invest. 106, 411–420 (2000).

    Article  CAS  Google Scholar 

  28. De Caterina, R. et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96, 60–68 (1995).

    Article  CAS  Google Scholar 

  29. Setty, B.N. & Stuart, M.J. Vascular cell adhesion molecule-1 is involved in mediating hypoxia-induced sickle red blood cell adherence to endothelium: Potential role in sickle-cell disease. Blood 88, 2311–2320 (1996).

    CAS  PubMed  Google Scholar 

  30. Han, T.H., Hyduke, D.R., Vaughn, M.W., Fukuto, J.M. & Liao, J.C. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc. Natl. Acad. Sci. USA 99, 7763–7768 (2002).

    Article  CAS  Google Scholar 

  31. Ford, P.C., Wink, D.A. & Stanbury, D.M. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett. 326, 1–3 (1993).

    Article  CAS  Google Scholar 

  32. Hogg, N. The biochemistry and physiology of S-nitrosothiols. Annu. Rev. Pharmacol. Toxicol. 42, 585–600 (2002).

    Article  CAS  Google Scholar 

  33. Gladwin, M.T. et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc. Natl. Acad. Sci. USA 97, 11482–11487 (2000).

    Article  CAS  Google Scholar 

  34. Gladwin, M.T. et al. Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl. Acad. Sci. USA 97, 9943–9948 (2000).

    Article  CAS  Google Scholar 

  35. McMahon, T.J. et al. Nitric oxide in the human respiratory cycle. Nature Med. 8, 711–717 (2002).

    Article  CAS  Google Scholar 

  36. Ruschitzka, F.T. et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc. Natl. Acad. Sci. USA 97, 11609–11613 (2000).

    Article  CAS  Google Scholar 

  37. Banerjee, D., Rodriguez, M., Nag, M. & Adamson, J.W. Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int. 57, 1895–1904 (2000).

    Article  CAS  Google Scholar 

  38. Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature 409, 198–201 (2001).

    Article  CAS  Google Scholar 

  39. Belhassen, L. et al. Endothelial dysfunction in patients with sickle-cell disease is related to selective impairment of shear stress-mediated vasodilation. Blood 97, 1584–1589 (2001).

    Article  CAS  Google Scholar 

  40. Nath, K.A. et al. Mechanisms of vascular instability in a transgenic mouse model of sickle-cell disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1949–R1955 (2000).

    Article  CAS  Google Scholar 

  41. Kaul, D.K., Liu, X.D., Fabry, M.E. & Nagel, R.L. Impaired nitric oxide-mediated vasodilation in transgenic sickle mouse. Am. J. Physiol. Heart Circ. Physiol. 278, H1799–H1806 (2000).

    Article  CAS  Google Scholar 

  42. Aslan, M. et al. Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle-cell disease. Proc. Natl. Acad. Sci. USA 98, 15215–15220 (2001).

    Article  CAS  Google Scholar 

  43. Cannon, R.O. III et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J. Clin. Invest. 108, 279–287 (2001).

    Article  CAS  Google Scholar 

  44. Rassaf, T. et al. Evidence for in vivo transport of bioactive nitric oxide in human plasma. J. Clin. Invest. 109, 1241–1248 (2002).

    Article  CAS  Google Scholar 

  45. Morris, C.R. et al. Arginine therapy: A novel strategy to induce nitric oxide production in sickle-cell disease. Br. J. Haematol. 111, 498–500 (2000).

    Article  CAS  Google Scholar 

  46. Gladwin, M.T. et al. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity. J. Clin. Invest. 104, 937–945 (1999).

    Article  CAS  Google Scholar 

  47. Marley, R., Feelisch, M., Holt, S. & Moore, K. A chemiluminescense-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radic. Res. 32, 1–9 (2000).

    Article  CAS  Google Scholar 

  48. Gladwin, M.T. et al. S-nitrosohemoglobin is unstable in the reductive red cell environment and lacks O2/NO-linked allosteric function. J. Biol. Chem. 277, 27818–27828 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pease-Fye and B. Yang for technical assistance and B. Bennett for assistance with EPR spectroscopy. This work was supported by intramural NIH research funds, NIH grants RR01008 and GM55792 (N.H.), and International Merck Fellowship in Clinical Pharmacology (J.E.T.-S.). NO gas and delivery systems were kindly provided by INO Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Gladwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, C., Wang, X., Tanus-Santos, J. et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 8, 1383–1389 (2002). https://doi.org/10.1038/nm1202-799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1202-799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing