Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes

Abstract

Type 1 diabetes develops over many years and is characterized ultimately by the destruction of insulin-producing pancreatic beta cells by autoreactive T cells. Nonetheless, the role of innate cells in the initiation of this disease remains poorly understood. Here, we show that in young female nonobese diabetic mice, physiological beta cell death induces the recruitment and activation of B-1a cells, neutrophils and plasmacytoid dendritic cells (pDCs) to the pancreas. Activated B-1a cells secrete IgGs specific for double-stranded DNA. IgGs activate neutrophils to release DNA-binding cathelicidin-related antimicrobial peptide (CRAMP), which binds self DNA. Then, self DNA, DNA-specific IgG and CRAMP peptide activate pDCs through the Toll-like receptor 9–myeloid differentiation factor 88 pathway, leading to interferon-α production in pancreatic islets. We further demonstrate through the use of depleting treatments that B-1a cells, neutrophils and IFN-α–producing pDCs are required for the initiation of the diabetogenic T cell response and type 1 diabetes development. These findings reveal that an innate immune cell crosstalk takes place in the pancreas of young NOD mice and leads to the initiation of T1D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate immune cells infiltrate the pancreas of NOD mice in the first postnatal weeks.
Figure 2: Pancreatic pDCs express IFN-α and are required for T1D development in NOD mice.
Figure 3: B-1a cells activate pDCs in the pancreas and participate in the initiation of T1D.
Figure 4: Neutrophils from the pancreas of young NOD mice produce NET-associated CRAMP at 3 weeks of age.
Figure 5: Neutrophils and B-1a cells cooperate to promote IFN-α production by pDCs.
Figure 6: Initial beta cell death is required to induce innate cell activation and T1D development.

Similar content being viewed by others

References

  1. Coppieters, K.T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lehuen, A., Diana, J., Zaccone, P. & Cooke, A. Immune cell crosstalk in type 1 diabetes. Nat. Rev. Immunol. 10, 501–513 (2010).

    CAS  PubMed  Google Scholar 

  3. Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163–183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilliet, M., Cao, W. & Liu, Y.J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606 (2008).

    CAS  PubMed  Google Scholar 

  5. Swiecki, M. & Colonna, M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol. Rev. 234, 142–162 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fabris, P. et al. Insulin-dependent diabetes mellitus during α-interferon therapy for chronic viral hepatitis. J. Hepatol. 28, 514–517 (1998).

    CAS  PubMed  Google Scholar 

  7. Guerci, A.P. et al. Onset of insulin-dependent diabetes mellitus after interferon-alfa therapy for hairy cell leukaemia. Lancet 343, 1167–1168 (1994).

    CAS  PubMed  Google Scholar 

  8. Allen, J.S. et al. Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes 58, 138–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Winkler, C. et al. An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes. Diabetes 60, 685–690 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stewart, T.A. et al. Induction of type I diabetes by interferon-α in transgenic mice. Science 260, 1942–1946 (1993).

    CAS  PubMed  Google Scholar 

  11. Alba, A. et al. IFN-β accelerates autoimmune type 1 diabetes in nonobese diabetic mice and breaks the tolerance to beta cells in nondiabetes-prone mice. J. Immunol. 173, 6667–6675 (2004).

    CAS  PubMed  Google Scholar 

  12. Trudeau, J.D. et al. Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 49, 1–7 (2000).

    CAS  PubMed  Google Scholar 

  13. Mathis, D., Vence, L. & Benoist, C. Beta-cell death during progression to diabetes. Nature 414, 792–798 (2001).

    CAS  PubMed  Google Scholar 

  14. Turley, S., Poirot, L., Hattori, M., Benoist, C. & Mathis, D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med. 198, 1527–1537 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bock, T., Kyhnel, A., Pakkenberg, B. & Buschard, K. The postnatal growth of the beta-cell mass in pigs. J. Endocrinol. 179, 245–252 (2003).

    CAS  PubMed  Google Scholar 

  16. Kassem, S.A., Ariel, I., Thornton, P.S., Scheimberg, I. & Glaser, B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 49, 1325–1333 (2000).

    CAS  PubMed  Google Scholar 

  17. O'Brien, B.A. et al. A deficiency in the in vivo clearance of apoptotic cells is a feature of the NOD mouse. J. Autoimmun. 26, 104–115 (2006).

    CAS  PubMed  Google Scholar 

  18. Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2011).

    CAS  PubMed  Google Scholar 

  19. Kendall, P.L., Woodward, E.J., Hulbert, C. & Thomas, J.W. Peritoneal B cells govern the outcome of diabetes in non-obese diabetic mice. Eur. J. Immunol. 34, 2387–2395 (2004).

    CAS  PubMed  Google Scholar 

  20. Mantovani, A., Cassatella, M.A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    CAS  PubMed  Google Scholar 

  21. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. Garcia-Romo, G.S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Lande, R. & Gilliet, M. Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann. NY Acad. Sci. 1183, 89–103 (2010).

    CAS  PubMed  Google Scholar 

  24. Fabris, P. et al. Type 1 diabetes mellitus in patients with chronic hepatitis C before and after interferon therapy. Aliment. Pharmacol. Ther. 18, 549–558 (2003).

    CAS  PubMed  Google Scholar 

  25. Li, Q. et al. Interferon-α initiates type 1 diabetes in nonobese diabetic mice. Proc. Natl. Acad. Sci. USA 105, 12439–12444 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, Q. & McDevitt, H.O. The role of interferon α in initiation of type I diabetes in the NOD mouse. Clin. Immunol. 140, 3–7 (2011).

    CAS  PubMed  Google Scholar 

  27. Peng, R.H., Paek, E., Xia, C.Q., Tennyson, N. & Clare-Salzler, M.J. Heightened interferon-α/β response causes myeloid cell dysfunction and promotes T1D pathogenesis in NOD mice. Ann. NY Acad. Sci. 1079, 99–102 (2006).

    CAS  PubMed  Google Scholar 

  28. Sobel, D.O. & Ahvazi, B. α-interferon inhibits the development of diabetes in NOD mice. Diabetes 47, 1867–1872 (1998).

    CAS  PubMed  Google Scholar 

  29. Sobel, D.O. et al. Low dose poly I:C prevents diabetes in the diabetes prone BB rat. J. Autoimmun. 11, 343–352 (1998).

    CAS  PubMed  Google Scholar 

  30. Brod, S.A., Malone, M., Darcan, S., Papolla, M. & Nelson, L. Ingested interferon α suppresses type I diabetes in non-obese diabetic mice. Diabetologia 41, 1227–1232 (1998).

    CAS  PubMed  Google Scholar 

  31. Tanaka-Kataoka, M. et al. Oral use of interferon-α delays the onset of insulin-dependent diabetes mellitus in nonobese diabetes mice. J. Interferon Cytokine Res. 19, 877–879 (1999).

    CAS  PubMed  Google Scholar 

  32. Serreze, D.V., Hamaguchi, K. & Leiter, E.H. Immunostimulation circumvents diabetes in NOD/Lt mice. J. Autoimmun. 2, 759–776 (1989).

    CAS  PubMed  Google Scholar 

  33. Zhou, R., Wei, H. & Tian, Z. NK3-like NK cells are involved in protective effect of polyinosinic-polycytidylic acid on type 1 diabetes in nonobese diabetic mice. J. Immunol. 178, 2141–2147 (2007).

    CAS  PubMed  Google Scholar 

  34. Ewel, C.H., Sobel, D.O., Zeligs, B.J. & Bellanti, J.A. Poly I:C accelerates development of diabetes mellitus in diabetes-prone BB rat. Diabetes 41, 1016–1021 (1992).

    CAS  PubMed  Google Scholar 

  35. Sobel, D.O. et al. Poly I:C induces development of diabetes mellitus in BB rat. Diabetes 41, 515–520 (1992).

    CAS  PubMed  Google Scholar 

  36. Huang, X., Hultgren, B., Dybdal, N. & Stewart, T.A. Islet expression of interferon-α precedes diabetes in both the BB rat and streptozotocin-treated mice. Immunity 1, 469–478 (1994).

    CAS  PubMed  Google Scholar 

  37. Theofilopoulos, A.N., Kono, D.H., Beutler, B. & Baccala, R. Intracellular nucleic acid sensors and autoimmunity. J. Interferon Cytokine Res. 31, 867–886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Desmet, C.J. & Ishii, K.J. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat. Rev. Immunol. 12, 479–491 (2012).

    CAS  PubMed  Google Scholar 

  39. Lang, K.S. et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med. 11, 138–145 (2005).

    CAS  PubMed  Google Scholar 

  40. Aune, T.M. & Pierce, C.W. Activation of a suppressor T-cell pathway by interferon. Proc. Natl. Acad. Sci. USA 79, 3808–3812 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mujtaba, M.G., Soos, J.M. & Johnson, H.M. CD4 T suppressor cells mediate interferon τ protection against experimental allergic encephalomyelitis. J. Neuroimmunol. 75, 35–42 (1997).

    CAS  PubMed  Google Scholar 

  42. Teige, I., Liu, Y. & Issazadeh-Navikas, S. IFN-β inhibits T cell activation capacity of central nervous system APCs. J. Immunol. 177, 3542–3553 (2006).

    CAS  PubMed  Google Scholar 

  43. González-Navajas, J.M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Kared, H. et al. Treatment with granulocyte colony-stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4+CD25+ regulatory T-cells. Diabetes 54, 78–84 (2005).

    CAS  PubMed  Google Scholar 

  45. Saxena, V., Ondr, J.K., Magnusen, A.F., Munn, D.H. & Katz, J.D. The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J. Immunol. 179, 5041–5053 (2007).

    CAS  PubMed  Google Scholar 

  46. Diana, J. et al. Viral infection prevents diabetes by inducing regulatory T cells through NKT cell–plasmacytoid dendritic cell interplay. J. Exp. Med. 208, 729–745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Diana, J. et al. NKT cell-plasmacytoid dendritic cell cooperation via OX40 controls viral infection in a tissue-specific manner. Immunity 30, 289–299 (2009).

    CAS  PubMed  Google Scholar 

  48. Mallone, R. & Brezar, V. To B or not to B: (anti)bodies of evidence on the crime scene of type 1 diabetes? Diabetes 60, 2020–2022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. De Filippo, G. et al. Increased CD5+CD19+ B lymphocytes at the onset of type 1 diabetes in children. Acta Diabetol. 34, 271–274 (1997).

    CAS  PubMed  Google Scholar 

  50. Habib, T. et al. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J. Immunol. 188, 487–496 (2012).

    CAS  PubMed  Google Scholar 

  51. Shirai, T., Okada, T. & Hirose, S. Genetic regulation of CD5+ B cells in autoimmune disease and in chronic lymphocytic leukemia. Ann. NY Acad. Sci. 651, 509–526 (1992).

    CAS  PubMed  Google Scholar 

  52. Burastero, S.E., Casali, P., Wilder, R.L. & Notkins, A.L. Monoreactive high affinity and polyreactive low affinity rheumatoid factors are produced by CD5+ B cells from patients with rheumatoid arthritis. J. Exp. Med. 168, 1979–1992 (1988).

    CAS  PubMed  Google Scholar 

  53. Thomas, J.W., Kendall, P.L. & Mitchell, H.G. The natural autoantibody repertoire of nonobese diabetic mice is highly active. J. Immunol. 169, 6617–6624 (2002).

    CAS  PubMed  Google Scholar 

  54. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guiducci, C. et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J. Exp. Med. 207, 2931–2942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8–deficient mice. Science 304, 1147–1150 (2004).

    CAS  PubMed  Google Scholar 

  58. Todd, J.A. Etiology of type 1 diabetes. Immunity 32, 457–467 (2010).

    CAS  PubMed  Google Scholar 

  59. Aumeunier, A. et al. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice. PLoS ONE 5, e11484 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Murakami, M., Yoshioka, H., Shirai, T., Tsubata, T. & Honjo, T. Prevention of autoimmune symptoms in autoimmune-prone mice by elimination of B-1 cells. Int. Immunol. 7, 877–882 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Charles (INSERM UMR-S 699, Paris Diderot University) for dsDNA-specific immunoglobulin ELISA, M. Colonna (Department of Pathology and Immunology, Washington University School of Medicine) for m927 mAb, S. Mecheri (Biology of Host Parasite Interactions Unit, Pasteur Institute) for NIMP-14 mAb, S. Muller (CNRS, Institut de Biologie Moléculaire et Cellulaire, UPR9021) for serum from NZB/W F1 mice, J. Ravetch (Laboratory of Molecular Genetics and Immunology, Rockefeller University) for FcγRIV-specific mAb, N. Thieblemont (CNRS UMR 8147, Paris Descartes University) for Myd88−/− NOD mice and all for their expertise. We thank F. Boutillon for technical assistance and the staff of the INSERM U986 mouse facility for help in animal care. Y.S. is supported by a doctoral fellowship from the Region Ile de France. This work was supported by funds from INSERM, Centre National de la Recherche Scientifique, ANR-05-PCOD009-01, ANR-09-GENO-023 and Labex INFLAMEX to A.L. A.L. is recipient of an APHP-CNRS Contrat Hospitalier de Recherche Translationelle.

Author information

Authors and Affiliations

Authors

Contributions

J.D. initiated and led the whole project, coordinated with different investigators, designed and performed experiments, analyzed the data and wrote the manuscript; Y.S. designed and performed experiments, analyzed the data and wrote the manuscript; L.F. did confocal microscopy experiments, analyzed the data and wrote the manuscript; L.B. provided technical assistance; B.A. and F.B. provided intellectual input and key reagents for neutrophil and pDC analysis; and A.L. was responsible for project planning, data analysis, discussion and writing.

Corresponding authors

Correspondence to Julien Diana or Agnès Lehuen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18 (PDF 4060 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diana, J., Simoni, Y., Furio, L. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med 19, 65–73 (2013). https://doi.org/10.1038/nm.3042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing