Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses

Abstract

The TPL-2 MEK kinase is essential for activation of the Erk MAP kinase pathway during innate immune responses. TPL-2 is found in complex with ABIN-2 (A20-binding inhibitor of NF-κB 2). Here, using antigen-presenting cells from ABIN-2-deficient mice, we show that ABIN-2 was required for optimal activation of Erk induced by receptors that signal via TPL-2, including Toll-like receptor 4 and tumor necrosis factor receptor 1 in macrophages, and CD40 in B cells. ABIN-2 was necessary for the maintenance of TPL-2 protein stability. In contrast, ABIN-2 deficiency did not affect agonist-induced regulation of transcription factor NF-κB. Stimulation of ABIN-2-deficient macrophages via Toll-like receptor 4 showed that different thresholds of Erk signaling were required for optimal induction of tumor necrosis factor and interleukin 1β. Thus, ABIN-2 acts to positively regulate the Erk signaling potential by stabilizing TPL-2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LPS-induced activation of NF-κB is not affected by ABIN-2 deficiency.
Figure 2: ABIN-2 does not control TNF-induced NF-κB activation.
Figure 3: ABIN-2 is not required for stimulation of NF-κB activity in B cells or T cells.
Figure 4: Activation of Erk by LPS and TNF is impaired in Tnip2−/− macrophages.
Figure 5: ABIN-2 is required for efficient activation of Erk by TLR2, TLR3 and TLR9 in macrophages.
Figure 6: Activation of Erk in Tnip2−/− B cells.
Figure 7: Retroviral reconstitution of Tnip2−/− macrophages with ABIN-2 'rescues' cells from their Erk signaling defect.
Figure 8: Regulation of Erk target genes in Tnip2−/− macrophages.
Figure 9: Optimal LPS induction of IL-1β in vivo requires ABIN-2.

Similar content being viewed by others

References

  1. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  2. Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65 (2003).

    Article  CAS  Google Scholar 

  3. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  4. Beinke, S. & Ley, S.C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 382, 393–409 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  5. Beyaert, R., Heyninck, K. & van Huffel, S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60, 1143–1151 (2000).

    Article  CAS  Google Scholar 

  6. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  7. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  8. van Huffel, S., Delaei, F., Heyninck, K., de Valck, D. & Beyaert, R. Identification of a novel A20-binding inhibitor of nuclear factor-κB activation termed ABIN-2. J. Biol. Chem. 276, 30216–30223 (2001).

    Article  CAS  Google Scholar 

  9. Hughes, D.P., Marron, M.B. & Brindle, N.P. The anti-inflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-κB inhibitor ABIN-2. Circ. Res. 92, 630–636 (2003).

    Article  CAS  Google Scholar 

  10. Sun, L. & Chen, Z.J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16, 119–120 (2004).

    Article  CAS  Google Scholar 

  11. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  12. Lang, V. et al. ABIN2 forms a ternary complex with TPL-2 and NF-κB1 p105 and is essential for TPL-2 protein stability. Mol. Cell. Biol. 24, 5235–5248 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  13. Patriotis, C., Makris, A., Bear, S.E. & Tsichlis, P.N. Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T cell lymphomas and in T cell activation. Proc. Natl. Acad. Sci. USA 90, 2251–2255 (1993).

    Article  CAS  Google Scholar 

  14. Miyoshi, J., Higashi, T., Mukai, H., Ohuchi, T. & Kakunaga, T. Structure and transforming potential of the human cot oncogene encoding a putative protein kinase. Mol. Cell. Biol. 11, 4088–4096 (1991).

    Article  CAS  PubMed Central  Google Scholar 

  15. Dumitru, C.D. et al. TNFα induction by LPS is regulated post-transcriptionally via a TPL2/Erk-dependent pathway. Cell 103, 1071–1083 (2000).

    Article  CAS  Google Scholar 

  16. Eliopoulos, A.G., Wang, C.C., Dumitru, C.D. & Tsichlis, P.N. TPL-2 transduces CD40 and TNF signals that activate Erk and regulates IgE induction by CD40. EMBO J. 22, 3855–3864 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  17. Salmeron, A. et al. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J. 15, 817–826 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  18. O'Gorman, S., Dagenais, N.A., Qian, M. & Marchuk, Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl. Acad. Sci. USA 94, 14602–14607 (1997).

    Article  CAS  Google Scholar 

  19. Chen, L.F. & Greene, W.C. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol. 5, 392–401 (2004).

    Article  CAS  Google Scholar 

  20. Sun, S.C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).

    Article  CAS  Google Scholar 

  21. Baeuerle, P.A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  22. Krappmann, D. et al. The IκB kinase complex and NF-κB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol. Cell. Biol. 24, 6488–6500 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  23. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  24. Sugimoto, K. et al. A serine/threonine kinase, Cot/Tpl2, modulates bacterial DNA-induced IL-12 production and Th cell differentiation. J. Clin. Invest. 114, 857–866 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  25. Aoki, M. et al. The human cot proto-oncogene encodes two protein serine/threonine kinases with different transforming activities by alternative initiation of translation. J. Biol. Chem. 268, 22723–22732 (1993).

    CAS  PubMed  Google Scholar 

  26. Belich, M.P., Salmeron, A., Johnston, L.H. & Ley, S.C. TPL-2 kinase regulates the proteolysis of the NF-κB inhibitory protein NF-κB1 p105. Nature 397, 363–368 (1999).

    Article  CAS  Google Scholar 

  27. Hsu, H.Y. & Wen, M.H. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem. 277, 22131–22139 (2002).

    Article  CAS  Google Scholar 

  28. Eliopoulos, A.G., Dumitru, C.D., Wang, C.-C., Cho, J. & Tsichlis, P.N. Induction of COX-2 by LPS in macrophages is regulated by TPL2-dependent CREB activation signals. EMBO J. 21, 4831–4840 (2002).

    Article  CAS  Google Scholar 

  29. Waterfield, M.R., Zhang, M., Norman, L.P. & Sun, S.-C. NF-κB1 / p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the TPL-2 kinase. Mol. Cell 11, 685–694 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  30. Guha, M. et al. Lipopolysaccharide activation of the MEK-Erk1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor α expression by inducing Elk-1 phosphorylation and Egr-a expression. Blood 98, 1429–1439 (2001).

    Article  CAS  Google Scholar 

  31. Heyninck, K., Kreike, M.M. & Beyaert, R. Structure-function analysis of the A20-binding inhibitor of NF-κB activation, ABIN-1. FEBS Lett. 536, 135–140 (2003).

    Article  CAS  Google Scholar 

  32. Zhang, S.Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000).

    Article  CAS  Google Scholar 

  33. Heyninck, K. et al. The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J. Cell Biol. 145, 1471–1482 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  34. Beinke, S. et al. NF-κB p105 negatively regulates TPL-2 MEK kinase activity. Mol. Cell. Biol. 23, 4739–4752 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  35. Bouwmeester, T. et al. A physical and functional map of the human TNFα/NF-κB signal transduction pathway. Nat. Cell Biol. 6, 97–105 (2004).

    Article  CAS  Google Scholar 

  36. Beinke, S. et al. Lipopolysaccharide activation of the TPL-2/MEK/Extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol. 24, 9658–9667 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  37. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  38. Brummer, T., Shaw, P.E., Reth, M. & Misawa, Y. Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signalling. EMBO J. 21, 5611–5622 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  39. Sato, S. et al. Essential function of the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087–1095 (2005).

    Article  CAS  Google Scholar 

  40. Woods, D. et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5598–5611 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  41. Jorritsma, P.J., Brogdon, J.L. & Bottomly, K. Role of TCR-induced extracellular signal-regulated kinase activation in the regulation of early IL-4 expression in naive CD4+ T cells. J. Immunol. 170, 2427–2434 (2003).

    Article  CAS  Google Scholar 

  42. Salmeron, A. et al. Direct phosphorylation of NF-κB p105 by the IκB kinase complex on serine 927 is essential for signal-induced p105 proteolysis. J. Biol. Chem. 276, 22215–22222 (2001).

    Article  CAS  Google Scholar 

  43. Warren, M.K. & Vogel, S.N. Bone marrow-derived macrophages: development and regulation of differentiation markers by colony-stimulating factor and interferons. J. Immunol. 134, 982–989 (1985).

    CAS  PubMed  Google Scholar 

  44. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  Google Scholar 

  45. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826.

  46. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

  47. Lang, V. et al. βTrCP-mediated proteolysis of NF-κB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol. Cell. Biol. 23, 402–413 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  48. Beinke, S., Belich, M.P. & Ley, S.C. The death domain of NF-κB1 p105 is essential for signal-induced p105 proteolysis. J. Biol. Chem. 277, 24162–24168 (2002).

    Article  CAS  Google Scholar 

  49. Alkalay, I. et al. In vivo stimulation of IκB phosphorylation is not sufficient to activate NF-κB. Mol. Cell. Biol. 15, 1294–1301 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  50. Zheng, Y., Vig, M., Lyons, J., van Parijs, L. & Beg, A.A. Combined deficiency of p50 and cRel in CD4+ T cells reveals an essential requirement for nuclear factor κB in regulating mature T cell survival and in vivo function. J. Exp. Med. 197, 861–874 (2003).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Kitamura and P. Tsichlis for reagents; S. Beinke and B. Seddon (Division of Immune Cell Biology, NIMR) for critical reading of the manuscript; A. Garefalaki and U. Menzel (Division of Molecular Immunology, NIMR) for help with culturing targeted embryonic stem cells; M. Holman (Division of Immunoregulation, NIMR) for advice on LPS injections; and the NIMR Photographics department, NIMR Biological Services and other members of the Ley laboratory for help during the course of this work. Supported by the UK Medical Research Council and Arthritis Research Campaign (L0549 to A.S. and 16053 to F.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C Ley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Disruption of the Tnip2 gene in mice. (PDF 220 kb)

Supplementary Fig. 2

Survival and proliferation of B and T cells are unaffected by ABIN-2 deficiency. (PDF 198 kb)

Supplementary Fig. 3

ABIN-2 deficiency does not alter steady-state levels of Map3k8 mRNA. (PDF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papoutsopoulou, S., Symons, A., Tharmalingham, T. et al. ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses. Nat Immunol 7, 606–615 (2006). https://doi.org/10.1038/ni1334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1334

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing