Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superinfecting mycobacteria home to established tuberculous granulomas

Abstract

A central paradox of tuberculosis immunity is that reinfection and bacterial persistence occur despite vigorous host immune responses concentrated in granulomas, which are organized structures that form in response to infection. Prevailing models attribute reinfection and persistence to bacterial avoidance of host immunity via establishment of infection outside primary granulomas. Alternatively, persistence is attributed to a gradual bacterial adaptation to evolving host immune responses. We show here that superinfecting Mycobacterium marinum traffic rapidly into preexisting granulomas, including their caseous (necrotic) centers, through specific mycobacterium-directed and host cell–mediated processes, yet adapt quickly to persist long term therein. These findings demonstrate a failure of established granulomas, concentrated foci of activated macrophages and antigen-specific immune effector cells, to eradicate newly deposited mycobacteria not previously exposed to host responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preexisting infection confers immunity to a low-dose secondary infection.
Figure 2: Long-term superinfection of frogs results in comingling of primary and secondary infecting strains.
Figure 3: Distribution of preinfecting and superinfecting M. marinum strains in frog tissues after long-term infection.
Figure 4: Superinfecting bacteria and beads traffic into pre-established granulomas.
Figure 5: Trafficking of M. marinum versus latex beads into pre-established M. marinum granulomas.
Figure 6: S. arizonae is mostly excluded from M. marinum granulomas.
Figure 7: M. marinum traffic into caseated fish lesions.
Figure 8: Superinfecting bacteria induce granuloma-specific genes after entry into mature granulomas.

Similar content being viewed by others

References

  1. Parrish, N.M., Dick, J.D. & Bishai, W.R. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6, 107–112 (1998).

    Article  CAS  Google Scholar 

  2. Flynn, J.L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  Google Scholar 

  3. Cosma, C.L., Sherman, D.R. & Ramakrishnan, L. The secret lives of the pathogenic mycobacteria. Annu. Rev. Microbiol. 57, 641–676 (2003).

    Article  CAS  Google Scholar 

  4. Stead, W.W. Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence of residuals of the primary infection or exogenous reinfection? Am. Rev. Respir. Dis. 95, 729–745 (1967).

    CAS  PubMed  Google Scholar 

  5. Caminero, J.A. et al. Exogenous reinfection with tuberculosis on a European island with a moderate incidence of disease. Am. J. Respir. Crit. Care Med. 163, 717–720 (2001).

    Article  CAS  Google Scholar 

  6. van Rie, A. et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N. Engl. J. Med. 341, 1174–1179 (1999).

    Article  CAS  Google Scholar 

  7. Kaufmann, S.H. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1, 20–30 (2001).

    Article  CAS  Google Scholar 

  8. Sambandamurthy, V.K. et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med. 8, 1171–1174 (2002).

    Article  CAS  Google Scholar 

  9. Pym, A.S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9, 533–539 (2003).

    Article  CAS  Google Scholar 

  10. Grosset, J. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob. Agents Chemother. 47, 833–836 (2003).

    Article  CAS  Google Scholar 

  11. Dannenberg, A.M., Jr. Immunopathogenesis of pulmonary tuberculosis. Hosp. Pract. 28, 51–58 (1993).

    Article  Google Scholar 

  12. Lawn, S.D., Butera, S.T. & Shinnick, T.M. Tuberculosis unleashed: the impact of human immunodeficiency virus infection on the host granulomatous response to Mycobacterium tuberculosis. Microbes Infect. 4, 635–646 (2002).

    Article  CAS  Google Scholar 

  13. Frieden, T.R., Sterling, T.R., Munsiff, S.S., Watt, C.J. & Dye, C. Tuberculosis. Lancet 362, 887–899 (2003).

    Article  Google Scholar 

  14. Dannenberg, A.M., Jr. Macrophage turnover, division and activation within developing, peak and “healed” tuberculous lesions produced in rabbits by BCG. Tuberculosis (Edinb). 83, 251–260 (2003).

    Article  Google Scholar 

  15. Hernandez-Pando, R. et al. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356, 2133–2138 (2000).

    Article  CAS  Google Scholar 

  16. Balasubramanian, V., Wiegeshaus, E.H., Taylor, B.T. & Smith, D.W. Pathogenesis of tuberculosis: pathway to apical localization. Tuber. Lung Dis. 75, 168–178 (1994).

    Article  CAS  Google Scholar 

  17. McMurray, D.N. Hematogenous reseeding of the lung in low-dose, aerosol-infected guinea pigs: unique features of the host-pathogen interface in secondary tubercles. Tuberculosis (Edinb). 83, 131–134 (2003).

    Article  Google Scholar 

  18. Opie, E.L. & Aronson, J.D. Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch. Pathol. Lab. Med. 4, 1–21 (1927).

    Google Scholar 

  19. Ramakrishnan, L., Valdivia, R.H., McKerrow, J.H. & Falkow, S. Mycobacterium marinum causes both long-term subclinical infection and acute disease in the leopard frog (Rana pipiens). Infect. Immun. 65, 767–773 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramakrishnan, L. Using Mycobacterium marinum and its hosts to study tuberculosis. Curr. Sci. 86, 82–92 (2004).

    Google Scholar 

  21. Talaat, A.M., Reimschuessel, R., Wasserman, S.S. & Trucksis, M. Goldfish, Carassius auratus, a novel animal model for the study of Mycobacterium marinum pathogenesis. Infect. Immun. 66, 2938–2942 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Traver, D. et al. The zebrafish as a model organism to study development of the immune system. Adv. Immunol. 81, 253–330 (2003).

    PubMed  Google Scholar 

  23. Chan, K. et al. Complex pattern of Mycobacterium marinum gene expression during long- term granulomatous infection. Proc. Natl. Acad. Sci. USA 99, 3920–3925 (2002).

    Article  CAS  Google Scholar 

  24. Davis, J.M. et al. Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693–702 (2002).

    Article  CAS  Google Scholar 

  25. Bouley, D.M., Ghori, N., Mercer, K.L., Falkow, S. & Ramakrishnan, L. Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect. Immun. 69, 7820–7831 (2001).

    Article  CAS  Google Scholar 

  26. Ramakrishnan, L., Federspiel, N.A. & Falkow, S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

    Article  CAS  Google Scholar 

  27. Gao, L.Y. et al. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol. Microbiol. 49, 1547–1563 (2003).

    Article  CAS  Google Scholar 

  28. Stamm, L.M. et al. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J. Exp. Med. 198, 1361–1368 (2003).

    Article  CAS  Google Scholar 

  29. Ohl, M.E. & Miller, S.I. Salmonella: A model for bacterial pathogenesis. Annu. Rev. Med. 52, 259–274 (2001).

    Article  CAS  Google Scholar 

  30. Repique, C.J., Li, A., Collins, F.M. & Morris, S.L. DNA immunization in a mouse model of latent tuberculosis: effect of DNA vaccination on reactivation of disease and on reinfection with a secondary challenge. Infect. Immun. 70, 3318–3323 (2002).

    Article  CAS  Google Scholar 

  31. Ziegler, J.E., Edwards, M.L. & Smith, D.W. Exogenous reinfection in experimental airborne tuberculosis. Tubercle 66, 121–128 (1985).

    Article  CAS  Google Scholar 

  32. Tailleux, L. et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197, 121–127 (2003).

    Article  CAS  Google Scholar 

  33. Teitelbaum, R. et al. The M cell as a portal of entry to the lung for the bacterial pathogen Mycobacterium tuberculosis. Immunity 10, 641–650 (1999).

    Article  CAS  Google Scholar 

  34. Geijtenbeek, T.B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003).

    Article  CAS  Google Scholar 

  35. Roach, D.R., Briscoe, H., Baumgart, K., Rathjen, D.A. & Britton, W.J. Tumor necrosis factor (TNF) and a TNF-mimetic peptide modulate the granulomatous response to Mycobacterium bovis BCG infection in vivo. Infect. Immun. 67, 5473–5476. (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Richter-Dahlfors, A., Buchan, A.M. & Finlay, B.B. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186, 569–580 (1997).

    Article  CAS  Google Scholar 

  37. Janeway, C.A., Travers, P., Walport, M. & Shlomchik, M. Immunobiology (Garland Publishing, New York, 2001).

    Google Scholar 

  38. Rhoades, E.R., Frank, A.A. & Orme, I.M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung Dis. 78, 57–66 (1997).

    Article  CAS  Google Scholar 

  39. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  40. Adams, D.O. The granulomatous inflammatory response. A review. Am. J. Pathol. 84, 164–191 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wayne, L.G. & Sohaskey, C.D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    Article  CAS  Google Scholar 

  42. Fenhalls, G. et al. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect. Immun. 70, 6330–6338 (2002).

    Article  CAS  Google Scholar 

  43. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  Google Scholar 

  44. Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Klein for technical assistance; K. Klein and P. Carroll for constructing plasmids; K. Urdahl, S. Miller, D. Sherman, M. Kaja, C. Wilson, M. Bevan and N. Salama for discussions; A. Farr and J. Dooley for tissue cryosectioning advice and equipment; D. Lauman for advice on statistics; and K. Urdahl, M. Kaja, T. Pozos and D. Tobin for comments on the manuscript. Supported by National Institutes of Health (R01 AI 36396) and an Ellison Medical Foundation New Scholar in Global Infectious Diseases award (L.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalita Ramakrishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Distribution of primary- and secondary-infecting M. marinum in frog tissues 3 days after secondary infection. (PDF 87 kb)

Supplementary Table 2

S. arizonae is no longer within established M. marinum granulomas by seven days after superinfection. (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosma, C., Humbert, O. & Ramakrishnan, L. Superinfecting mycobacteria home to established tuberculous granulomas. Nat Immunol 5, 828–835 (2004). https://doi.org/10.1038/ni1091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing