Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sweet 'n' sour: the impact of differential glycosylation on T cell responses

Abstract

The fate and functional activity of T lymphocytes depend largely on the precise timing of gene expression and protein production. However, it is clear that post-translational modification of proteins affects their functional properties. Although modifications such as phosphorylation have been intensely studied by immunologists, less attention has been paid to the impact that changes in glycosylation have on protein function. However, there is considerable evidence that glycosylation plays a key role in immune regulation. We will focus here on examples in which differential glycosylation affects the development, survival or reactivity of T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major glycosylation pathways.
Figure 2: Schematic representations of how changes in glycosylation might influence lymphocyte activation and adhesion.
Figure 3: Alternative pathways in early O-linked glycan modification.

Similar content being viewed by others

References

  1. Lowe, J.B. Glycosylation, immunity, and autoimmunity. Cell 104, 809–812 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Rudd, P.M. et al. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol. 293, 351–366 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. & Dwek, R.A. Glycosylation and the immune system. Science 291, 2370–2376 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Varki, A. et al. (eds.) Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999).

    Google Scholar 

  5. Crocker, P.R. & Varki, A. Siglecs, sialic acids and innate immunity. Trends Immunol. 22, 337–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Rabinovich, G.A. et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Grogan, M.J., Pratt, M.R., Marcaurelle, L.A. & Bertozzi, C.R. Homogeneous glycopeptides and glycoproteins for biological investigation. Annu. Rev. Biochem. 71, 593–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Marth, J.D. Will the transgenic mouse serve as a Rosetta Stone to glycoconjugate function? Glycocon. J. 11, 3–8 (1994).

    Article  CAS  Google Scholar 

  9. Lowe, J.B. & Marth, J.D. Genetic approaches to carbohydrate function. Annu. Rev. Biochem. (in the press, 2003).

  10. Despont, J.P., Abel, C.A. & Grey, H.M. Sialic acids and sialyltransferases in murine lymphoid cells: indicators of T cell maturation. Cell. Immunol. 17, 487–494 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Reisner, Y., Linker-Isreali, M. & Sharon, N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell. Immunol. 25, 129–134 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Pink, J.R. Changes in T-lymphocyte glycoprotein structures associated with differentiation. Contemp. Top. Mol. Immunol. 9, 89–113 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Toporowicz, A. & Reisner, Y. Changes in sialyltransferase activity during murine T cell differentiation. Cell. Immunol. 100, 10–19 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Lefrancois, L. Expression of carbohydrate differentiation antigens during ontogeny of the murine thymus. J. Immunol. 139, 2220–2229 (1987).

    CAS  PubMed  Google Scholar 

  15. Fowlkes, B.J. et al. Differential binding of fluorescein-labeled lectins to mouse thymocytes: subsets revealed by flow microfluorometry. J. Immunol. 125, 623–630 (1980).

    CAS  PubMed  Google Scholar 

  16. Gillespie, W., Paulson, J.C., Kelm, S., Pang, M. & Baum, L.G. Regulation of α2,3-sialyltransferase expression correlates with conversion of peanut agglutinin (PNA)+ to PNA-phenotype in developing thymocytes. J. Biol. Chem. 268, 3801–3804 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Baum, L.G. et al. Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. J. Biol. Chem. 271, 10793–10799 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Priatel, J.J. et al. The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12, 273–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Martin, L.T., Marth, J.D., Varki, A. & Varki, N.M. Genetically altered mice with different sialyltransferase deficiencies show tissue-specific alterations in sialylation and sialic acid 9-O-acetylation. J. Biol. Chem. 277, 32930–32938 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Tsuboi, S. & Fukuda, M. Roles of O-linked oligosaccharides in immune responses. Bioessays 23, 46–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Baum, L.G. et al. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J. Exp. Med. 181, 877–887 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Ellies, L.G., Tao, W., Fellinger, W., Teh, H.S. & Ziltener, H.J. The CD43 130-kD peripheral T-cell activation antigen is downregulated in thymic positive selection. Blood 88, 1725–1732 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Taira, S. & Nariuchi, H. Possible role of neuraminidase in activated T cells in the recognition of allogeneic Ia. J. Immunol. 141, 440–446 (1988).

    CAS  PubMed  Google Scholar 

  24. Chervenak, R. & Cohen, J.J. Peanut lectin binding as a marker for activated T-lineage lymphocytes. Thymus 4, 61–67 (1982).

    CAS  PubMed  Google Scholar 

  25. Landolfi, N.F., Leone, J., Womack, J.E. & Cook, R.G. Activation of T lymphocytes results in an increase in H-2-encoded neuraminidase. Immunogenetics 22, 159–167 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Piller, F., Piller, V., Fox, R.I. & Fukuda, M. Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J. Biol. Chem. 263, 15146–15150 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Galvan, M., Murali-Krishna, K., Ming, L.L., Baum, L. & Ahmed, R. Alterations in cell surface carbohydrates on T cells from virally infected mice can distinguish effector/memory CD8+ T cells from naive cells. J. Immunol. 161, 641–648 (1998).

    CAS  PubMed  Google Scholar 

  28. Kaufmann, M. et al. Identification of an α2,6-sialyltransferase induced early after lymphocyte activation. Int. Immunol. 11, 731–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Harrington, L.E., Galvan, M., Baum, L.G., Altman, J.D. & Ahmed, R. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med. 191, 1241–1246 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Siegelman, M.H., DeGrendele, H.C. & Estess, P. Activation and interaction of CD44 and hyaluronan in immunological systems. J. Leukoc. Biol. 66, 315–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Khan, A.A., Bose, C., Yam, L.S., Soloski, M.J. & Rupp, F. Physiological regulation of the immunological synapse by agrin. Science 292, 1681–1686 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Martin, P.T. Glycobiology of the synapse. Glycobiology 12, 1–7 (2002).

    Article  Google Scholar 

  33. Trautmann, A. & Vivier, E. Immunology. Agrin–a bridge between the nervous and immune systems. Science 292, 1667–1668 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Shaw, A.S. & Allen, P.M. Kissing cousins: immunological and neurological synapses. Nature Immunol. 2, 575–576 (2001).

    Article  CAS  Google Scholar 

  35. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J.W. Negative regulation of T-cell activation and autoimmunity by Mgat5N-glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Krishna, M. & Varki, A. 9-O-Acetylation of sialomucins: a novel marker of murine CD4 T cells that is regulated during maturation and activation. J. Exp. Med. 185, 1997–2013 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carlow, D.A., Ardman, B. & Ziltener, H.J. A novel CD8 T cell-restricted CD45RB epitope shared by CD43 is differentially affected by glycosylation. J. Immunol. 163, 1441–1448 (1999).

    CAS  PubMed  Google Scholar 

  38. Blander, J.M., Visintin, I., Janeway, C.A. Jr. & Medzhitov, R. A(1,3)-fucosyltransferase VII and α(2,3)-sialyltransferase IV are up-regulated in activated CD4 T cells and maintained after their differentiation into Th1 and migration into inflammatory sites. J. Immunol. 163, 3746–3752 (1999).

    CAS  PubMed  Google Scholar 

  39. Lim, Y.C. et al. Expression of functional selectin ligands on Th cells is differentially regulated by IL-12 and IL-4. J. Immunol. 162, 3193–3201 (1999).

    CAS  PubMed  Google Scholar 

  40. Lim, Y.C. et al. IL-12, STAT4-dependent up-regulation of CD4+ T cell core 2 β-1,6-n-acetylglucosaminyltransferase, an enzyme essential for biosynthesis of P-selectin ligands. J. Immunol. 167, 4476–4484 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Moody, A.M. et al. Developmentally regulated glycosylation of the CD8αβ coreceptor stalk modulates ligand binding. Cell 107, 501–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Ellies, L.G. et al. Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9, 881–890 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Tsuboi, S. & Fukuda, M. Branched O-linked oligosaccharides ectopically expressed in transgenic mice reduce primary T-cell immune responses. EMBO J. 16, 6364–6373 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsuboi, S. & Fukuda, M. Overexpression of branched O-linked oligosaccharides on T cell surface glycoproteins impairs humoral immune responses in transgenic mice. J. Biol. Chem. 273, 30680–30687 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Schwientek, T. et al. Control of O-glycan branch formation. Molecular cloning and characterization of a novel thymus-associated core 2 β1, 6-n-acetylglucosaminyltransferase. J. Biol. Chem. 275, 11106–11113 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Yeh, J.C., Ong, E. & Fukuda, M. Molecular cloning and expression of a novel β-1, 6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274, 3215–3221 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, X.P., Enioutina, E.Y. & Daynes, R.A. The control of IL-4 gene expression in activated murine T lymphocytes: a novel role for neu-1 sialidase. J. Immunol. 158, 3070–3080 (1997).

    CAS  PubMed  Google Scholar 

  48. Chen, X.P., Ding, X. & Daynes, R.A. Ganglioside control over IL-4 priming and cytokine production in activated T cells. Cytokine 12, 972–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Womack, J.E., Yan, D.L. & Potier, M. Gene for neuraminidase activity on mouse chromosome 17 near h-2: pleiotropic effects on multiple hydrolases. Science 212, 63–65 (1981).

    Article  CAS  PubMed  Google Scholar 

  50. Rottier, R.J., Bonten, E. & d'Azzo, A. A point mutation in the neu-1 locus causes the neuraminidase defect in the SM/J mouse. Hum. Mol. Genet. 7, 313–321 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Oh, S. & Eichelberger, M.C. Polarization of allogeneic T-cell responses by influenza virus-infected dendritic cells. J. Virol. 74, 7738–7744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Todeschini, A.R. et al. Costimulation of host T lymphocytes by a trypanosomal trans-sialidase: involvement of CD43 signaling. J. Immunol. 168, 5192–5198 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Penninger, J.M., Irie-Sasaki, J., Sasaki, T. & Oliveira-dos-Santos, A.J. CD45: new jobs for an old acquaintance. Nature Immunol. 2, 389–396 (2001).

    Article  CAS  Google Scholar 

  54. Janeway, C.A. Jr. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu. Rev. Immunol. 10, 645–674 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Luqman, M. & Bottomly, K. Activation requirements for CD4+ T cells differing in CD45R expression. J. Immunol. 149, 2300–2306 (1992).

    CAS  PubMed  Google Scholar 

  56. Chui, D., Ong, C.J., Johnson, P., Teh, H.S. & Marth, J.D. Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J. 13, 798–807 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leitenberg, D., Boutin, Y., Lu, D.D. & Bottomly, K. Biochemical association of CD45 with the T cell receptor complex: regulation by CD45 isoform and during T cell activation. Immunity 10, 701–711 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Majeti, R., Bilwes, A.M., Noel, J.P., Hunter, T. & Weiss, A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279, 88–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103, 1059–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, Z. & Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nature Immunol. 3, 764–771 (2002).

    Article  CAS  Google Scholar 

  61. Wu, W., Harley, P.H., Punt, J.A., Sharrow, S.O. & Kearse, K.P. Identification of CD8 as a peanut agglutinin (PNA) receptor molecule on immature thymocytes. J. Exp. Med. 184, 759–764 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Baldwin, T.A. & Ostergaard, H.L. Developmentally regulated changes in glucosidase II association with, and carbohydrate content of, the protein tyrosine phosphatase CD45. J. Immunol. 167, 3829–3835 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen, J.T. et al. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J. Immunol. 167, 5697–5707 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Hennet, T., Chui, D., Paulson, J.C. & Marth, J.D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl. Acad. Sci. USA 95, 4504–4509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fouillit, M. et al. Regulation of CD45-induced signaling by galectin-1 in Burkitt lymphoma B cells. Glycobiology 10, 413–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Dornan, S. et al. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J. Biol. Chem. 277, 1912–1918 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Kishimoto, H. & Sprent, J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med. 190, 65–73 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Higgins, E.A., Siminovitch, K.A., Zhuang, D.L., Brockhausen, I. & Dennis, J.W. Aberrant O-linked oligosaccharide biosynthesis in lymphocytes and platelets from patients with the Wiskott-Aldrich syndrome. J. Biol. Chem. 266, 6280–6290 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Ellies, L.G., Jones, A.T., Williams, M.J. & Ziltener, H.J. Differential regulation of CD43 glycoforms on CD4+ and CD8+ T lymphocytes in graft-versus-host disease. Glycobiology 4, 885–893 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Jones, A.T. et al. Characterization of the activation-associated isoform of CD43 on murine T lymphocytes. J. Immunol. 153, 3426–3439 (1994).

    CAS  PubMed  Google Scholar 

  71. Manjunath, N., Correa, M., Ardman, M. & Ardman, B. Negative regulation of T-cell adhesion and activation by CD43. Nature 377, 535–538 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Ostberg, J.R., Barth, R.K. & Frelinger, J.G. The Roman god Janus: a paradigm for the function of CD43. Immunol. Today 19, 546–550 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. He, Y.W. & Bevan, M.J. High level expression of CD43 inhibits T cell receptor/CD3-mediated apoptosis. J. Exp. Med. 190, 1903–1908 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sperling, A.I. et al. CD43 is a murine T cell costimulatory receptor that functions independently of CD28. J. Exp. Med. 182, 139–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Sperling, A.I. et al. TCR signaling induces selective exclusion of CD43 from the T cell-antigen-presenting cell contact site. J. Immunol. 161, 6459–6462 (1998).

    CAS  PubMed  Google Scholar 

  76. Stockton, B.M., Cheng, G., Manjunath, N., Ardman, B. & von Andrian, U.H. Negative regulation of T cell homing by CD43. Immunity 8, 373–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Onami, T.M. et al. Dynamic regulation of T cell immunity by CD43. J. Immunol. 168, 6022–6031 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Carlow, D.A., Corbel, S.Y. & Ziltener, H.J. Absence of CD43 fails to alter T cell development and responsiveness. J. Immunol. 166, 256–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Allenspach, E.J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Delon, J., Kaibuchi, K. & Germain, R.N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15, 691–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. van den Berg, T.K. et al. Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J. Immunol. 166, 3637–3640 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Cyster, J.G., Shotton, D.M. & Williams, A.F. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J. 10, 893–902 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fukuda, M. & Carlsson, S.R. Leukosialin, a major sialoglycoprotein on human leukocytes as differentiation antigens. Med. Biol. 64, 335–343 (1986).

    CAS  PubMed  Google Scholar 

  85. Shaw, A.S. & Dustin, M.L. Making the T cell receptor go the distance: A topological view of T cell activation. Immunity 6, 361–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Casabo, L.G., Mamalaki, C., Kioussis, D. & Zamoyska, R. T cell activation results in physical modification of the mouse CD8β chain. J. Immunol. 152, 397–404 (1994).

    CAS  PubMed  Google Scholar 

  87. Daniels, M.A. et al. CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 15, 1051–1061 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. O'Rourke, A.M. & Mescher, M.F. The roles of CD8 in cytotoxic T lymphocyte function. Immunol. Today 14, 183–188 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Nakayama, T. et al. Inhibition of T cell receptor expression and function in immature CD4+CD8+ cells by CD4. Science 249, 1558–1561 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Wiest, D.L. et al. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med. 178, 1701–1712 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Baldwin, K.K., Trenchak, B.P., Altman, J.D. & Davis, M.M. Negative selection of T cells occurs throughout thymic development. J. Immunol. 163, 689–698 (1999).

    CAS  PubMed  Google Scholar 

  92. Baum, L.G. Developing a taste for sweets. Immunity 16, 5–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Gascoigne, N.R. T-cell differentiation: MHC class I's sweet tooth lost on maturity. Curr. Biol. 12, 99–101 (2002).

    Article  Google Scholar 

  94. Deck, M.B., Sjolin, P., Unanue, E.R. & Kihlberg, J. MHC-restricted, glycopeptide-specific T cells show specificity for both carbohydrate and peptide residues. J. Immunol. 162, 4740–4744 (1999).

    CAS  PubMed  Google Scholar 

  95. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  96. Pihlgren, M., Dubois, P.M., Tomkowiak, M., Sjogren, T. & Marvel, J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med. 184, 2141–2151 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Davey, G.M. et al. Pre-selection thymocytes are more sensitive to TCR stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Curtsinger, J.M., Lins, D.C. & Mescher, M.F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C) to TCR/CD8 signaling in response to antigen. J. Immunol. 160, 3236–3243 (1998).

    CAS  PubMed  Google Scholar 

  99. Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R.N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10, 367–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Knop, J. Effect of Vibrio cholerae neuraminidase on the mitogen response of T lymphocytes. I. Enhancement of macrophage T-lymphocyte cooperation in concanavalin-A-induced lymphocyte activation. Immunobiology 157, 474–485 (1980).

    Article  CAS  PubMed  Google Scholar 

  101. Cullen, S.E., Kindle, C.S., Shreffler, D.C. & Cowing, C. Differential glycosylation of murine B cell and spleen adherent cell Ia antigens. J. Immunol. 127, 1478–1484 (1981).

    CAS  PubMed  Google Scholar 

  102. Cowing, C. & Chapdelaine, J.M. T cells discriminate between Ia antigens expressed on allogeneic accessory cells and B cells: a potential function for carbohydrate side chains on Ia molecules. Proc. Natl. Acad. Sci. USA 80, 6000–6004 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hunig, T. The role of accessory cells in polyclonal T cell activation II. Induction of interleukin 2 responsiveness requires cell-cell contact. Eur J. Immunol. 13, 596–601 (1983).

    Article  CAS  PubMed  Google Scholar 

  104. Boog, C.J., Neefjes, J.J., Boes, J., Ploegh, H.L. & Melief, C.J. Specific immune responses restored by alteration in carbohydrate chains of surface molecules on antigen-presenting cells. Eur J. Immunol. 19, 537–542 (1989).

    Article  CAS  PubMed  Google Scholar 

  105. Powell, L.D., Whiteheart, S.W. & Hart, G.W. Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction. J. Immunol. 139, 262–270 (1987).

    CAS  PubMed  Google Scholar 

  106. Sprent, J. & Schaefer, M. Antigen-presenting cells for CD8+ T cells. Immunol. Rev. 117, 213–234 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Hebert, E. Endogenous lectins as cell surface transducers. Biosci. Rep. 20, 213–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Snapp, K.R., Heitzig, C.E., Ellies, L.G., Marth, J.D. & Kansas, G.S. Differential requirements for the O-linked branching enzyme core 2 β1-6-N-glucosaminyltransferase in biosynthesis of ligands for E-selectin and P-selectin. Blood 97, 3806–3811 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Sperandio, M. et al. Severe impairment of leukocyte rolling in venules of core 2 glucosaminyltransferase-deficient mice. Blood 97, 3812–3819 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Yeh, J.C. et al. Novel sulfated lymphocyte homing receptors and their control by a Core1 extension β1,3-N-acetylglucosaminyltransferase. Cell 105, 957–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Smithson, G. et al. Fuc-TVII is required for T helper 1 and T cytotoxic 1 lymphocyte selectin ligand expression and recruitment in inflammation, and together with Fuc-TIV regulates naive T cell trafficking to lymph nodes. J. Exp. Med. 194, 601–614 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Homeister, J.W. et al. The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12, 665–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Wagers, A.J., Waters, C.M., Stoolman, L.M. & Kansas, G.S. Interleukin 12 and interleukin 4 control T cell adhesion to endothelial selectins through opposite effects on α1,3-fucosyltransferase VII gene expression. J. Exp. Med. 188, 2225–2231 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Carlow, D.A., Corbel, S.Y., Williams, M.J. & Ziltener, H.J. IL-2, -4, and -15 differentially regulate O-glycan branching and P-selectin ligand formation in activated CD8 T cells. J. Immunol. 167, 6841–6848 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Wagers, A.J. & Kansas, G.S. Potent induction of α(1,3)-fucosyltransferase VII in activated CD4+ T cells by TGF-β 1 through a p38 mitogen-activated protein kinase-dependent pathway. J. Immunol. 165, 5011–5016 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Crocker, P.R. & Varki, A. Siglecs in the immune system. Immunology 103, 137–145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cornall, R.J., Goodnow, C.C. & Cyster, J.G. Regulation of B cell antigen receptor signaling by the Lyn/CD22/SHP1 pathway. Curr. Top. Microbiol. Immunol. 244, 57–68 (1999).

    CAS  PubMed  Google Scholar 

  120. Jin, L., McLean, P.A., Neel, B.G. & Wortis, H.H. Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J. Exp. Med. 195, 1199–1205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Razi, N. & Varki, A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc. Natl. Acad. Sci. USA 95, 7469–7474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kelm, S., Gerlach, J., Brossmer, R., Danzer, C.P. & Nitschke, L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J. Exp. Med. 195, 1207–1213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Scholler, N., Hayden-Ledbetter, M., Hellstrom, K.E., Hellstrom, I. & Ledbetter, J.A. CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J. Immunol. 166, 3865–3872 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Cramer, S.O. et al. Activation-induced expression of murine CD83 on T cells and identification of a specific CD83 ligand on murine B cells. Int. Immunol. 12, 1347–1351 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Lechmann, M. et al. The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J. Exp. Med. 194, 1813–1821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scholler, N. et al. Cutting edge: CD83 regulates the development of cellular immunity. J. Immunol. 168, 2599–2602 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Fujimoto, Y. et al. CD83 expression influences CD4+ T cell development in the thymus. Cell 108, 755–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Hughes, R.C. Galectins as modulators of cell adhesion. Biochimie 83, 667–676 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Perillo, N.L., Pace, K.E., Seilhamer, J.J. & Baum, L.G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. Perillo, N.L., Uittenbogaart, C.H., Nguyen, J.T. & Baum, L.G. Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J. Exp. Med. 185, 1851–1858 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vespa, G.N. et al. Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. J. Immunol. 162, 799–806 (1999).

    CAS  PubMed  Google Scholar 

  132. Chung, C.D., Lewis, L.A. & Miceli, M.C. T cell antigen receptor-induced IL-2 production and apoptosis have different requirements for Lck activities. J. Immunol. 159, 1758–1766 (1997).

    CAS  PubMed  Google Scholar 

  133. Wada, J., Ota, K., Kumar, A., Wallner, E.I. & Kanwar, Y.S. Developmental regulation, expression, and apoptotic potential of galectin-9, a β-galactoside binding lectin. J. Clin. Invest. 99, 2452–2461 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dennis, J.W., Warren, C.E., Granovsky, M. & Demetriou, M. Genetic defects in N-glycosylation and cellular diversity in mammals. Curr. Opin. Struct. Biol. 11, 601–607 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Poirier, F. & Robertson, E.J. Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development 119, 1229–1236 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Colnot, C., Fowlis, D., Ripoche, M.A., Bouchaert, I. & Poirier, F. Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev. Dyn. 211, 306–313 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Hsu, D.K. et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am. J. Pathol. 156, 1073–1083 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Jameson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, M., Hogquist, K. & Jameson, S. Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat Immunol 3, 903–910 (2002). https://doi.org/10.1038/ni1002-903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1002-903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing