Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-stage subduction history under North America inferred from multiple-frequency tomography

Abstract

Eastward subduction of oceanic tectonic plates has shaped the geologic history of western North America over the past 150 million years1,2,3,4. The mountain-building and volcanism that brought forth the spectacular landscapes of the West are credited to the vast ancient Farallon plate, which interacted mechanically and chemically with the overlying continent as it plunged back into the mantle. Here, we use finite-frequency travel-time and amplitude measurements of teleseismic P-waves in seven frequency bands to obtain a high-resolution tomographic image to 1,800 km depth. We discover several large, previously unknown pieces of the plate which show that two distinct stages of whole-mantle subduction are present under North America. The currently active one descends from the Pacific northwest coast to 1,500 km depth beneath the Great Plains, whereas its stalled predecessor occupies the transition zone and lower mantle beneath the eastern half of the continent. We argue that the separation between them is linked to the Laramide era 70–50 Myr ago, a time of unusual volcanism and mountain-building far inland generally explained by an episode of extremely flat subduction5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P-wave velocity anomalies in the North American mantle down to 1,800 km depth.
Figure 2: Three-dimensional views of the subducted Farallon plate under North America.
Figure 3: Proposed explanation for the big break and the establishment of the current subduction system.

Similar content being viewed by others

References

  1. Engebretson, D. C., Cox, A. & Gordon, R. G. Relative motions between oceanic and continental plates in the Pacific Basin. Geol. Soc. Am. Spec. Pap. 206, 1–58 (1985).

    Google Scholar 

  2. Schmid, C., Goes, S., van der Lee, S. & Giardini, D. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet. Sci. Lett. 204, 17–32 (2002).

    Article  Google Scholar 

  3. Bunge, H.-P. & Grand, S. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature 405, 337–340 (2000).

    Article  Google Scholar 

  4. Atwater, T. The Geology of North America Vol. N, 21–72 (Geological Society of North America, Boulder, Colorado, 1989).

    Google Scholar 

  5. Dickinson, W. R. & Snyder, W. S. in Laramide Folding Associated with Basement Block Faulting in the Western United States Vol. 151 (ed. Matthews, V.) 355–366 (Geological Society of America Memoir, Boulder, Colorado, 1978).

    Book  Google Scholar 

  6. Rasmussen, J. & Humphreys, E. D. Tomographic image of the Juan de Fuca plate beneath Washington and western Oregon using teleseismic P-wave travel-times. Geophys. Res. Lett. 15, 1417–1420 (1988).

    Article  Google Scholar 

  7. Harris, R. A., Iyer, H. M. & Dawson, P. B. Imaging the Juan de Fuca Plate beneath southern Oregon using teleseismic P-wave residuals. J. Geophys. Res. 96, 19879–19889 (1991).

    Article  Google Scholar 

  8. Bostock, M. G. & VanDecar, J. C. Upper-mantle structure of the northern Cascadia subduction zone. Can. J. Earth Sci. 32, 1–12 (1995).

    Article  Google Scholar 

  9. Xue, M. & Allen, R. M. The fate of the Juan de Fuca plate: Implications for a Yellowstone plume head. Earth Planet. Sci. Lett. 264, 266–276 (2007).

    Article  Google Scholar 

  10. van der Lee, S. & Nolet, G. Seismic image of the subducted trailing fragments of the Farallon plate. Nature 386, 266–269 (1997).

    Article  Google Scholar 

  11. Grand, S. P. Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res. 99, 11591–11621 (1994).

    Article  Google Scholar 

  12. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  13. Sigloch, K. & Nolet, G. Measuring finite-frequency body wave amplitudes and travel times. Geophys. J. Int. 167, 271–287 (2006).

    Article  Google Scholar 

  14. Hung, S.-H., Shen, Y. & Chiao, L.-Y. Imaging seismic velocity beneath the Iceland hot spot: A finite-frequency approach. J. Geophys. Res. 109, B08305 (2004).

    Article  Google Scholar 

  15. Dahlen, F. A., Hung, S.-H. & Nolet, G. Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys. J. Int. 141, 157–174 (2000).

    Article  Google Scholar 

  16. Dahlen, F. A. & Baig, A. M. Fréchet kernels for body wave amplitudes. Geophys. J. Int. 150, 440–466 (2002).

    Article  Google Scholar 

  17. Nolet, G. A Breviary of Seismic Tomography (Cambridge Univ. Press, Cambridge, 2008, in the press).

  18. Tromp, J., Tape, C. & Liu, Q. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160, 195–216 (2005).

    Article  Google Scholar 

  19. Tian, Y., Montelli, R., Nolet, G. & Dahlen, F. A. Computing traveltime and amplitude sensitivity kernels in finite-frequency tomography. J. Comput. Phys. 226, 2271–2288 (2007).

    Article  Google Scholar 

  20. Miller, D. M., Nilsen, T. H. & Bilodeau, W. L. in The Cordilleran Orogen: Conterminous US Geological Society of America (eds Burchfiel, B. C. et al.) (Boulder, Colorado, 1992).

    Google Scholar 

  21. The North American Volcanic and Intrusive Rock Database Movie: Magmatism in the Western United States over the past 65 Myr. <http://navdat.kgs.ku.edu/Navweb/WUS.mov> created/maintained by Allen F. Glazner and the NAVDAT team (2008).

  22. Christensen, U. R. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett. 140, 27–39 (1996).

    Article  Google Scholar 

  23. Olbertz, D., Wortel, M. J. R. & Hansen, U. Trench migration and subduction zone geometry. Geophys. Res. Lett. 24, 221–224 (1997).

    Article  Google Scholar 

  24. Humphreys, E. D. Post-Laramide removal of the Farallon slab, western United States. Geology 23, 987–990 (1995).

    Article  Google Scholar 

  25. Severinghaus, J. & Atwater, T. in Basin and Range extensional tectonics near the Latitude of Las Vegas, Nevada (ed. Wernicke, B. P.) 1–22 (Geological Society of America Memoir 176, Boulder, Colorado, 1990).

    Book  Google Scholar 

  26. Schellart, W. P., Freeman, J., Stegman, D.R, Moresi, L. & May, D. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311 (2007).

    Article  Google Scholar 

  27. Wortel, M. J. R. & Spakman, W. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290, 1910–1917 (2000).

    Article  Google Scholar 

  28. Pierce, K. L., Morgan, L. A. & Saltus, R. W. in Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province (eds Bonnichsen, B. et al.) 5–34 (Idaho Geological Survey Bulletin 30, 2002).

    Google Scholar 

  29. Cserepes, L. & Yuen, D. A. On the possibility of a second kind of mantle plume. Earth Planet. Sci. Lett. 183, 61–71 (2000).

    Article  Google Scholar 

  30. Nolet, G., Karato, S.-I. & Montelli, R. Plume fluxes from seismic tomography. Earth Planet. Sci. Lett. 248, 685–699 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the IRIS Data Management Center for timely and easy access to the seismic data. This work was supported by NSF grants EAR0345996 and EAR0309298, and by Princeton University.

Author information

Authors and Affiliations

Authors

Contributions

K.S. and G.N. designed the tomographic experiment. K.S. carried out the experiment and analysed the data. K.S. and N.M. worked out the tectonic interpretation. All authors participated in preparing the paper.

Corresponding author

Correspondence to Karin Sigloch.

Supplementary information

Supplementary Information

Supplementary figures S1-S5 (PDF 4308 kb)

Supplementary Information

Supplementary .mat binary file and 'readme' file with instructions how to use the .mat file (ZIP 3348 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigloch, K., McQuarrie, N. & Nolet, G. Two-stage subduction history under North America inferred from multiple-frequency tomography. Nature Geosci 1, 458–462 (2008). https://doi.org/10.1038/ngeo231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing