Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of SET domain and myotubularin-related proteins modulates growth control

Abstract

Several proteins that contribute to epigenetic mechanisms of gene regulation contain a characteristic motif of unknown function called the SET (Suvar3-9, Enhancer-of-zeste, Trithorax) domain. We have demonstrated that SET domains mediate highly conserved interactions with a specific family of proteins that display similarity with dual-specificity phosphatases (dsPTPases). These include myotubularin, the gene of which is mutated in a subset of patients with X-linked myotubular myopathy, and Sbf1, a newly isolated homologue of myotubularin. In contrast with myotubularin, Sbf 1 lacks a functional catalytic domain which dephosphorylates phospho-tyrosine and serine-containing peptides in vitro. Competitive interference of endogenous SET domain-dsPTPase interactions by forced expression of Sbf 1 induced oncogenic transformation of NIH 3T3 fibroblasts and impaired the in vitro differentiation of C2 myoblast cells. We conclude that myotubularin-type phosphatases link SET-domain containing components of the epigenetic regulatory machinery with signalling pathways involved in growth and differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stassen, M.J. et al. The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech. Dev. 52, 209–223 (1995).

    Article  CAS  Google Scholar 

  2. Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831 (1994).

    Article  CAS  Google Scholar 

  3. Tkachuk, D.C., Kohler, S. & Cleary, M.L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71, 691–700 (1992).

    Article  CAS  Google Scholar 

  4. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992).

    Article  CAS  Google Scholar 

  5. Djabali, M.L. et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukemia. Nature Genet. 2, 113–118 (1992).

    Article  CAS  Google Scholar 

  6. Jones, R.S. & Gelbart, W.M., The Drosophila polycomb-group gene Enhancer of zeste contains a region with sequence similarity to trithorax. Mol. Cell. Biol. 13, 6357–6366 (1993).

    Article  CAS  Google Scholar 

  7. Kennison, J.A. & Tamkun, J.W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc. Natl. Acad. Sci. USA 85, 8136–8140 (1988).

    Article  CAS  Google Scholar 

  8. Kennison, J.A., Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu. Rev. Genet. 29, 289–303 (1995).

    Article  CAS  Google Scholar 

  9. Paro, R. Imprinting a determined state into the chromatin of Drosophila. Trends Genet. 6, 416–421 (1990).

    Article  CAS  Google Scholar 

  10. Pirotta, V. PcG complexes and chromatin silencing. Curr. Opin. Genet. Dev. 7, 249–258 (1997).

    Article  Google Scholar 

  11. Tripoulas, N., LaJeunesse, D., Gildea, J. & Shearn, A., The Drosophila ash1 gene product, which is localized at specific sites on polytene chromosomes, contains a SET domain and a PHD finger. Genetics 143, 913–928 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chinwalla, V., Jane, E.P. & Harte, P.J., The Drosophila trithorax protein binds to specific chromosomal sites and is co-localized with Polycomb at many sites. EMBO J. 14, 2056–2065 (1995).

    Article  CAS  Google Scholar 

  13. Rastelli, L., Chan, C.S. & Pirotta, V. Related chromosome binding sites for zeste, suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. EMBO J. 12, 1513–1522 (1993).

    Article  CAS  Google Scholar 

  14. Yu, B.D. et al. Altered Hox expression and segmental identity in MLL-mutant mice. Nature 378, 505–508 (1995).

    Article  CAS  Google Scholar 

  15. Nislow, C., Ray, E. & Pillus, L. SET1, a yeast member of the Trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol. Biol. Cell 8, 2421–2436 (1997).

    Article  CAS  Google Scholar 

  16. Laible, G. et al. Mammalian homologues of the Polycombgroup gene Enhancer of Zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiaetelomeres. EMBO J. 16, 3219–3232 (1997).

    Article  CAS  Google Scholar 

  17. Laporte, J. et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nature Genet. 13, 175–182 (1996).

    Article  CAS  Google Scholar 

  18. Fischer, E.H., Charbonneau, H. & Tonks, N.K. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253, 401–406 (1991).

    Article  CAS  Google Scholar 

  19. Butler, L.H. et al. The HRX proto-oncogene product is widely expressed in human tissues and localises to nuclear structures. Blood, 89, 3361–3370 (1997).

    CAS  PubMed  Google Scholar 

  20. Rohan, P.J. et al. PAC-1: A mitogen-induced nuclear protein tyrosine phosphatase. Science 259, 1763–1766 (1993).

    Article  CAS  Google Scholar 

  21. Sun, H. et al. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487–493 (1993).

    Article  CAS  Google Scholar 

  22. Ward, Y. et al. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367, 651–654 (1994).

    Article  CAS  Google Scholar 

  23. Streuli, M. Protein tyrosine phosphatases in signaling. Curr. Opin. Cell Biol. 8, 182–188 (1996).

    Article  CAS  Google Scholar 

  24. Rost, B. & Sander, C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55–72 (1994).

    Article  CAS  Google Scholar 

  25. Denu, J.M. et al. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc. Natl. Acad. Sci. USA 93, 2493–2498 (1996).

    Article  CAS  Google Scholar 

  26. Barford, D., Flint, A.J. & Tonks, N.K. Crystal structure of human protein tyrosine phosphatase 1B. Science 263,1397–1404 (1994).

    Article  CAS  Google Scholar 

  27. Yuvaniyama, J. et al. Crystal structure of the dual specificity protein phosphatase VHR. Science 272, 1328–1331 (1996).

    Article  CAS  Google Scholar 

  28. Guan, K.L. & Dixon, J.E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J. Biol. Chem. 266, 17026–17030 (1991).

    CAS  PubMed  Google Scholar 

  29. Wishart, M.J. et al. A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J. Biol. Chem. 270, 26782–26785 (1995).

    Article  CAS  Google Scholar 

  30. Denu, J.M. et al. Form and function in protein dephosphorylation. Cell 87, 361–364 (1996).

    Article  CAS  Google Scholar 

  31. Galaktionov, K. et al. CDC25 phosphatases as potential human oncogenes. Science 269, 1575–1577 (1995).

    Article  CAS  Google Scholar 

  32. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  Google Scholar 

  33. Steck, P.A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    Article  CAS  Google Scholar 

  34. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  Google Scholar 

  35. Carton, A.J., Flint, A.J. & Tonks, N.K. Identification of p130(cas) as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST. Mol. Cell. Biol. 16, 6408–6418 (1996).

    Article  Google Scholar 

  36. Flint, A.J., Tiganis, T., Barford, D. & Tonks, N.K. Development of ‘substrate trapping’ mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 94, 1680–1685 (1997).

    Article  CAS  Google Scholar 

  37. Waring, P.M. & Cleary, M.L. Disruption of a homolog of trithorax by 11q23 translocations: Leukemogenic and transcriptional implications. Curr. Top. Microbiol. Immunol. 220, 1–23 (1997).

    CAS  PubMed  Google Scholar 

  38. Lavau, C., Szilvassy, S., Slany, R. & Cleary, M.L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 16, 4226–4237 (1997).

    Article  CAS  Google Scholar 

  39. Slany, R., Lavau, C. & Cleary, M.L. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol. Cell. Biol. 18, 122–129 (1998).

    Article  CAS  Google Scholar 

  40. Zhou, G. et al. The catalytic role of Cys124 in the dual specificity phosphatase VHR. J. Biol. Chem. 269, 28284–28090 (1994).

    Google Scholar 

  41. Baskaran, R., Dahmas, M.E. & Wang, J.Y. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc. Natl. Acad. Sci. USA 90,11167–11171 (1993).

    Article  CAS  Google Scholar 

  42. Streuli, M. et al. A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc. Natl. Acad. Sci. USA 86, 8698–8702 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, X., Vivo, I., Slany, R. et al. Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet 18, 331–337 (1998). https://doi.org/10.1038/ng0498-331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing