Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors

Abstract

Genes mutated in congenital malformation syndromes are frequently implicated in oncogenesis1,2, but the causative germline and somatic mutations occur in separate cells at different times of an organism's life. Here we unify these processes to a single cellular event for mutations arising in male germ cells that show a paternal age effect3. Screening of 30 spermatocytic seminomas4,5 for oncogenic mutations in 17 genes identified 2 mutations in FGFR3 (both 1948A>G, encoding K650E, which causes thanatophoric dysplasia in the germline)6 and 5 mutations in HRAS. Massively parallel sequencing of sperm DNA showed that levels of the FGFR3 mutation increase with paternal age and that the mutation spectrum at the Lys650 codon is similar to that observed in bladder cancer7,8. Most spermatocytic seminomas show increased immunoreactivity for FGFR3 and/or HRAS. We propose that paternal age-effect mutations activate a common 'selfish' pathway supporting proliferation in the testis, leading to diverse phenotypes in the next generation including fetal lethality, congenital syndromes and cancer predisposition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy used to quantify mutation levels at the FGFR3 Lys650 codon.
Figure 2: Mutation levels at the FGFR3 Lys650 codon in sperm and blood quantified by massively parallel sequencing.
Figure 3: Age distribution in spermatocytic seminomas and immunohistochemical staining of FGFR3 and HRAS.
Figure 4: Pathways and phenotypic consequences of selfish mutations in the testis.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Friedman, J.M. Genetics and epidemiology, congenital anomalies and cancer. Am. J. Hum. Genet. 60, 469–473 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Crow, J.F. Age and sex effects on human mutation rates: an old problem with new complexities. J. Radiat. Res. (Tokyo) 47 (Suppl. B), B75–B82 (2006).

    Article  CAS  Google Scholar 

  4. Eble, J.N. Spermatocytic seminoma. Hum. Pathol. 25, 1035–1042 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Rajpert-De Meyts, E. et al. The immunohistochemical expression pattern of Chk2, p53, p19INK4d, MAGE-A4 and other selected antigens provides new evidence for the premeiotic origin of spermatocytic seminoma. Histopathology 42, 217–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Tavormina, P.L. et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat. Genet. 9, 321–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 23, 18–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Tomlinson, D.C., Baldo, O., Harnden, P. & Knowles, M.A. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J. Pathol. 213, 91–98 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nachman, M.W. & Crowell, S.L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kondrashov, A.S. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mutat. 21, 12–27 (2002).

    Article  Google Scholar 

  11. Taylor, J., Tyekucheva, S., Zody, M., Chiaromonte, F. & Makova, K.D. Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison. Mol. Biol. Evol. 23, 565–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Böhm, J., Munk-Schulenburg, S., Felscher, S. & Kohlhase, J. SALL1 mutations in sporadic Townes-Brocks syndrome are of predominantly paternal origin without obvious paternal age effect. Am. J. Med. Genet. 140A, 1904–1908 (2006).

    Article  Google Scholar 

  13. Arnheim, N. & Calabrese, P. Understanding what determines the frequency and pattern of human germline mutations. Nat. Rev. Genet. 10, 478–488 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moloney, D.M. et al. Exclusive paternal origin of new mutations in Apert syndrome. Nat. Genet. 13, 48–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Wilkin, D.J. et al. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome. Am. J. Hum. Genet. 63, 711–716 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sol-Church, K., Stabley, D.L., Nicholson, L., Gonzalez, I.L. & Gripp, K.W. Paternal bias in parental origin of HRAS mutations in Costello syndrome. Hum. Mutat. 27, 736–741 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Zampino, G. et al. Diversity, parental germline origin, and phenotypic spectrum of de novo HRAS missense changes in Costello syndrome. Hum. Mutat. 28, 265–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Tartaglia, M. et al. Paternal germline origin and sex-ratio distortion in transmission of PTPN11 mutations in Noonan syndrome. Am. J. Hum. Genet. 75, 492–497 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carlson, K.M. et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am. J. Hum. Genet. 55, 1076–1082 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dym, M., Kokkinaki, M. & He, Z. Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res. C 87, 27–34 (2009).

    Article  CAS  Google Scholar 

  21. Goriely, A., McVean, G.A.T., Röjmyr, M., Ingemarsson, B. & Wilkie, A.O.M. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 301, 643–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Goriely, A. et al. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc. Natl. Acad. Sci. USA 102, 6051–6056 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin, J. et al. The molecular anatomy of spontaneous germline mutations in human testes. PLoS Biol. 5, e224 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Choi, S.-K., Yoon, S.-R., Calabrese, P. & Arnheim, N. A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations. Proc. Natl. Acad. Sci. USA 105, 10143–10148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoon, S.-R. et al. The ups and downs of mutation frequencies during aging can account for the Apert syndrome paternal age effect. PLoS Genet. 5, e1000558 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tiemann-Boege, I. et al. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc. Natl. Acad. Sci. USA 99, 14952–14957 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilkie, A.O.M. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev. 16, 187–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Dakouane Giudicelli, M. et al. Increased achondroplasia mutation frequency with advanced age and evidence for G1138A mosaicism in human testis biopsies. Fertil. Steril. 89, 1651–1656 (2008).

    Article  PubMed  Google Scholar 

  29. Pollock, P.M. et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26, 7158–7162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dutt, A. et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl. Acad. Sci. USA 105, 8713–8717 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hansen, R.M.S., Goriely, A., Wall, S.A., Roberts, I.S.D. & Wilkie, A.O.M. Fibroblast growth factor receptor 2, gain-of-function mutations, and tumourigenesis: investigating a potential link. J. Pathol. 207, 27–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Bignell, G. et al. Sequence analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents and adults. Genes Chromosom. Cancer 45, 42–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Skakkebæk, N.E., Berthelsen, J.G., Giwercman, A. & Müller, J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl. 10, 19–28 (1987).

    Article  PubMed  Google Scholar 

  34. Hafner, C. et al. Spectrum of FGFR3 mutations in multiple intraindividual seborrheic keratoses. J. Invest. Dermatol. 127, 1883–1885 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Chesi, M. et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat. Genet. 16, 260–264 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bellus, G.A. et al. Distinct missense mutations of the FGFR3 Lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype. Am. J. Hum. Genet. 67, 1411–1421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, H. et al. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Mol. Cell 27, 717–730 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Orioli, I.M., Castilla, E.E., Scarano, G. & Mastroiacovo, P. Effect of paternal age in achondroplasia, thanatophoric dysplasia, and osteogenesis imperfecta. Am. J. Med. Genet. 59, 209–217 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Waller, D.K. et al. The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am. J. Med. Genet. 146A, 2385–2389 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Zankl, A. et al. Prenatal and postnatal presentation of severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) due to the FGFR3 Lys650Met mutation. Am. J. Med. Genet. 146A, 212–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Castro-Feijóo, L. et al. Hypochondroplasia and acanthosis nigricans: a new syndrome due to the p.Lys650Thr mutation in the fibroblast growth factor receptor 3 gene? Eur. J. Endocrinol. 159, 243–249 (2008).

    Article  PubMed  Google Scholar 

  42. van Rhijn, B.W.G. et al. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur. J. Hum. Genet. 10, 819–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Iwata, T., Li, C.-L., Deng, C.-X. & Francomano, C.A. Highly activated Fgfr3 with the K644M mutation causes prolonged survival in severe dwarf mice. Hum. Mol. Genet. 10, 1255–1264 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Iwata, T. et al. A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum. Mol. Genet. 9, 1603–1613 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Der, C.J., Finkel, T. & Cooper, G.M. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44, 167–176 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Aoki, Y., Niihori, T., Narumi, Y., Kure, S. & Matsubara, Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum. Mutat. 29, 992–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Srivastava, S.K., Yuasa, Y., Reynolds, S.H. & Aaronson, S.A. Effects of two major activating lesions on the structure and conformation of human ras oncogene products. Proc. Natl. Acad. Sci. USA 82, 38–42 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Juul, A. et al. Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene: Case Report. Hum. Reprod. 22, 1907–1911 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Nakagawa, T., Nabeshima, Y. & Yoshida, S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev. Cell 12, 195–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, J. et al. Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell 5, 76–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. He, Z. et al. Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells 26, 266–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Agazie, Y.M., Movilla, N., Ischenko, I. & Hayman, M.J. The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene 22, 6909–6918 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Jebar, A.H. et al. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24, 5218–5225 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Shukla, V., Coumoul, X., Wang, R.-H., Kim, H.-S. & Deng, C.-X. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat. Genet. 39, 1145–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Krenz, M. et al. Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proc. Natl. Acad. Sci. USA 105, 18930–18935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Looijenga, L.H.J. et al. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res. 66, 290–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ota, S., Zhou, Z.Q., Link, J.M. & Hurlin, P.J. The role of senescence and prosurvival signaling in controlling the oncogenic activity of FGFR2 mutants associated with cancer and birth defects. Hum. Mol. Genet. 18, 2609–2621 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Khaitovich, P., Enard, W., Lachmann, M. & Pääbo, S. Evolution of primate gene expression. Nat. Rev. Genet. 7, 693–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 40, 695–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Oxford Fertility Clinic and anonymous sperm donors for help with obtaining samples; L. Andersen, T. Chin-A-Woeng, K. Clark, K. Cook, A. Fenwick, A. Herlihy, H. Kistrup, J. Lim, J.-E. Nielsen, L. Thompson and N. Ward for expert technical support and advice; associates of the Rajpert-De Meyts and Wilkie labs for discussions; staff in numerous pathology departments in Denmark and Lund (Sweden), and G. Turner and I. Roberts, for histopathological support and samples; L. Legeai-Mallet for providing control genomic samples; G. Spagnoli for the MAGE-A4 antibody; M. de Gobbi for information on TaqMan primers for DNA quantification; and S. Robertson for comments on the manuscript. This work was funded by the Danish Cancer Society (DP08147 to E.R.-D.M.) and the Wellcome Trust (078666 to A.O.M.W.).

Author information

Authors and Affiliations

Authors

Contributions

A.G. designed and performed experiments, analyzed data and wrote the paper; R.M.S.H., I.B.T. and I.A.O. performed experiments; G.K.J. collected tumor samples and constructed tissue arrays; S.J.M., S.P.P. and G.A.T.M. developed analytical tools and analyzed data; E.R.-D.M. collected tumor samples, designed and performed experiments; A.O.M.W. designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Andrew O M Wilkie.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1 and 2 and Supplementary Tables 1, 3, 5 and 6 (PDF 1989 kb)

Supplementary Table 2

Results of immunohistochemical staining, mutation screening and SNP genotyping in 30 spermatocytic seminomas (SS). (XLS 6152 kb)

Supplementary Table 4

Mutation levels of the 9 possible substitutions at FGFR3 K650 codon (AAG) in sperm and blood samples, estimated by massively parallel sequencing. (XLS 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goriely, A., Hansen, R., Taylor, I. et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 41, 1247–1252 (2009). https://doi.org/10.1038/ng.470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing