Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity

Abstract

Cyclodipeptide synthases (CDPSs) constitute a family of peptide bond–forming enzymes that use aminoacyl-tRNAs for the synthesis of cyclodipeptides. Here, we describe the activity of 41 new CDPSs. We also show that CDPSs can be classified into two main phylogenetically distinct subfamilies characterized by specific functional subsequence signatures, named NYH and XYP. All 11 previously characterized CDPSs belong to the NYH subfamily, suggesting that further special features may be yet to be discovered in the other subfamily. CDPSs synthesize a large diversity of cyclodipeptides made up of 17 proteinogenic amino acids. The identification of several CDPSs having the same specificity led us to determine specificity sequence motifs that, in combination with the phylogenetic distribution of CDPSs, provide a first step toward being able to predict the cyclodipeptides synthesized by newly discovered CDPSs. The determination of the activity of ten more CDPSs with predicted functions constitutes a first experimental validation of this predictive approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic tree of known CDPSs and putative CDPS retrieved from bioinformatics searches in databases (May 2013).
Figure 2: CDPS subfamilies.
Figure 3: Diversity of cyclodipeptides produced by the CDPS subfamilies.
Figure 4: Sequence logos of the amino acids constituting the two binding pockets, P1 and P2, for groups of CDPSs synthesizing the same cyclodipeptides.

Similar content being viewed by others

References

  1. Gondry, M. et al. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat. Chem. Biol. 5, 414–420 (2009).

    Article  CAS  Google Scholar 

  2. Vetting, M.W., Hegde, S.S. & Blanchard, J.S. The structure and mechanism of the Mycobacterium tuberculosis cyclodityrosine synthetase. Nat. Chem. Biol. 6, 797–799 (2010).

    Article  CAS  Google Scholar 

  3. Sauguet, L. et al. Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. Nucleic Acids Res. 39, 4475–4489 (2011).

    Article  CAS  Google Scholar 

  4. Bonnefond, L. et al. Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proc. Natl. Acad. Sci. USA 108, 3912–3917 (2011).

    Article  CAS  Google Scholar 

  5. Seguin, J. et al. Nonribosomal peptide synthesis in animals: the cyclodipeptide synthase of Nematostella. Chem. Biol. 18, 1362–1368 (2011).

    Article  CAS  Google Scholar 

  6. Moutiez, M. et al. Unravelling the mechanism of non-ribosomal peptide synthesis by cyclodipeptide synthases. Nat. Commun. 5, 5141 (2014).

    Article  CAS  Google Scholar 

  7. Moutiez, M. et al. Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei. Nucleic Acids Res. 42, 7247–7258 (2014).

    Article  CAS  Google Scholar 

  8. Giessen, T.W., von Tesmar, A.M. & Marahiel, M.A. A tRNA-dependent two-enzyme pathway for the generation of singly and doubly methylated ditryptophan 2,5-diketopiperazines. Biochemistry 52, 4274–4283 (2013).

    Article  CAS  Google Scholar 

  9. Giessen, T.W., von Tesmar, A.M. & Marahiel, M.A. Insights into the generation of structural diversity in a tRNA-dependent pathway for highly modified bioactive cyclic dipeptides. Chem. Biol. 20, 828–838 (2013).

    Article  CAS  Google Scholar 

  10. Aravind, L., de Souza, R.F. & Iyer, L.M. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis. Biol. Direct 5, 48 (2010).

    Article  CAS  Google Scholar 

  11. Belin, P. et al. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat. Prod. Rep. 29, 961–979 (2012).

    Article  CAS  Google Scholar 

  12. Giessen, T.W. & Marahiel, M.A. The tRNA-dependent biosynthesis of modified cyclic dipeptides. Int. J. Mol. Sci. 15, 14610–14631 (2014).

    Article  CAS  Google Scholar 

  13. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

    Article  CAS  Google Scholar 

  14. Challis, G.L., Ravel, J. & Townsend, C.A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).

    Article  CAS  Google Scholar 

  15. Tang, M.R., Sternberg, D., Behr, R.K., Sloma, A. & Berka, R.M. Use of transcriptional profiling & bioinformatics to solve production problems. Ind. Biotechnol. (New Rochelle N.Y.) 2, 66–74 (2006).

    CAS  Google Scholar 

  16. Fukushima, K., Yazawa, K. & Arai, T. Biological activities of albonoursin. J. Antibiot. (Tokyo) 26, 175–176 (1973).

    Article  CAS  Google Scholar 

  17. Lautru, S., Gondry, M., Genet, R. & Pernodet, J.L. The albonoursin gene cluster of S. noursei: biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases. Chem. Biol. 9, 1355–1364 (2002).

    Article  CAS  Google Scholar 

  18. Gu, B., He, S., Yan, X. & Zhang, L. Tentative biosynthetic pathways of some microbial diketopiperazines. Appl. Microbiol. Biotechnol. 97, 8439–8453 (2013).

    Article  CAS  Google Scholar 

  19. Gondry, M. et al. Cyclic dipeptide oxidase from Streptomyces noursei. Isolation, purification and partial characterization of a novel amino acyl alpha,beta-dehydrogenase. Eur. J. Biochem. 268, 1712–1721 (2001).

    Article  CAS  Google Scholar 

  20. Belin, P. et al. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 106, 7426–7431 (2009).

    Article  Google Scholar 

  21. Cryle, M.J., Bell, S.G. & Schlichting, I. Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase. Biochemistry 49, 7282–7296 (2010).

    Article  CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2001).

  23. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  24. Schäffer, A.A. et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29, 2994–3005 (2001).

    Article  Google Scholar 

  25. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  26. Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    Article  CAS  Google Scholar 

  27. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    Article  CAS  Google Scholar 

  28. Letunic, I. & Bork, P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–W478 (2011).

    Article  CAS  Google Scholar 

  29. Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

    Article  CAS  Google Scholar 

  30. Schneider, T.D. & Stephens, R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  Google Scholar 

  31. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

  32. Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    CAS  Google Scholar 

  33. Braud, S. et al. Dual expression system suitable for high-throughput fluorescence-based screening and production of soluble proteins. J. Proteome Res. 4, 2137–2147 (2005).

    Article  CAS  Google Scholar 

  34. Bajad, S.U. et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A 1125, 76–88 (2006).

    Article  CAS  Google Scholar 

  35. Chen, Y.-H., Liou, S.-E. & Chen, C.-C. Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence. Eur. Food Res. Technol. 218, 589–597 (2004).

    Article  CAS  Google Scholar 

  36. Falick, A.M., Hines, W.M., Medzihradszly, K.F., Baldwin, M.A. & Gibson, B.W. Low-mass ions produced from peptides by high-energy collision-induced dissociation in tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 882–893 (1993).

    Article  CAS  Google Scholar 

  37. Johnson, R.S., Martin, S.A., Biemann, K., Stults, J.T. & Watson, J.T. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal. Chem. 59, 2621–2625 (1987).

    Article  CAS  Google Scholar 

  38. Papayannopoulos, I.A. The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom. Rev. 14, 49–73 (1995).

    Article  CAS  Google Scholar 

  39. Roepstorff, P. & Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984).

    Article  CAS  Google Scholar 

  40. Stark, T. & Hofmann, T. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J. Agric. Food Chem. 53, 7222–7231 (2005).

    Article  CAS  Google Scholar 

  41. Armirotti, A., Millo, E. & Damonte, G. How to discriminate between leucine and isoleucine by low energy ESI-TRAP MSn. J. Am. Soc. Mass Spectrom. 18, 57–63 (2007).

    Article  CAS  Google Scholar 

  42. Jeedigunta, S., Krenisky, J.M. & Kerr, R.G. Diketopiperazines as advanced intermediates in the biosynthesis of Ecteinascidins. Tetrahedron 56, 3303–3307 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the CEA, the CNRS, the Paris-Sud University and a grant from the French National Research Agency (ANR 2010/Blan 1501 01) to M.G. and J.-L.P. I.B.J. was supported by a doctoral fellowship from the CEA. The Service d'Ingénierie Moléculaire des Protéines is member of the Laboratory of Excellence LERMIT. We warmly thank V. Dive, head of the Service d'Ingénierie Moléculaire des Protéines, for his continuous support and encouragement throughout this work. We thank O. Lespinet for advice about the building of phylogenetic trees, D. Vallenet, M. Stam and M. Sorokina for helpful discussion on bioinformatics, and A. Ponties for technical assistance in cloning experiments. We are indebted to L. Beuvier for skillful assistance in mass data analysis. We thank F. Fenaille for kindly performing the experiments using the Orbitrap mass spectrophotometer. We thank P. Kessler and O. Lequin for skillful assistance in NMR experiments.

Author information

Authors and Affiliations

Authors

Contributions

M.G. obtained funding. M.M., J.-L.P., M.G. and P.B. developed the hypothesis and designed the study. I.B.J., M.M. and P.B. performed bioinformatic analyses. I.B.J., J.W., E.D. and C.M. performed cloning experiments and prepared culture supernatants. I.B.J. performed LC/MS/MS analysis. I.B.J. and M.M. analyzed MS/MS data. I.B.J., J.S., E.F. and P.B. purified cyclodipeptides from culture supernatants. S.D. performed amino acid composition analyses. A.L. and S.D. chemically synthesized cyclodipeptides. R.T. performed high-resolution mass spectrometry. I.B.J., M.M., J.W., E.D., J.S., J.L.P., M.G. and P.B. analyzed and discussed the results. I.B.J., M.M., M.G. and P.B. prepared the draft manuscript. All of the authors participated in the production of the final version of the manuscript.

Corresponding authors

Correspondence to Muriel Gondry or Pascal Belin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–7. (PDF 1651 kb)

Supplementary Data Set 1

Database information and sequence data relative to each putative CDPS produced in this study. (XLSX 46 kb)

Supplementary Data Set 2

Cyclodipeptides detected in bacterial culture supernatants. (XLSX 57 kb)

Supplementary Data Set 3

Sequence identity between the 11 previously identified CDPSs and the 49 CDPSs produced in this study. Sequence identities were obtained from the percent identity matrix created with Clustal Omega. (XLSX 64 kb)

Supplementary Data Set 4

HHPred results for the selected CDPSs. (XLSX 38 kb)

Supplementary Data Set 5

Multiple sequence alignment of the 49 selected CDPSs plus the 11 biochemically characterized CDPSs (FASTA format). Inactive CDPSs are identified by an asterisk. (PDF 501 kb)

Supplementary Data Set 6

N1-N72 bases of available tRNAs of the organisms containing the CDPSs studied. (XLSX 30 kb)

Supplementary Data Set 7

Prediction of aminoacyl-binding pockets in CDPSs. (XLSX 20 kb)

Supplementary Data Set 8

Phylogenetic tree of CDPS sequences retrieved by database searches (September 2014). (PDF 3726 kb)

Supplementary Data Set 9

CDPS groups according to clustering on the phylogenetic tree and identity between the P1 and P2 binding pockets. (XLSX 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacques, I., Moutiez, M., Witwinowski, J. et al. Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity. Nat Chem Biol 11, 721–727 (2015). https://doi.org/10.1038/nchembio.1868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1868

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing