Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monodisperse cylindrical micelles by crystallization-driven living self-assembly

Abstract

Non-spherical nanostructures derived from soft matter and with uniform size—that is, monodisperse materials—are of particular utility and interest, but are very rare outside the biological domain. We report the controlled formation of highly monodisperse cylindrical block copolymer micelles (length dispersity ≤ 1.03; length range, 200 nm to 2 µm) by the use of very small (20 nm) uniform crystallite seeds that serve as initiators for the crystallization-driven living self-assembly of added block-copolymer unimers with a crystallizable, core-forming metalloblock. This process is analogous to the use of small initiator molecules in classical living polymerization reactions. The length of the nanocylinders could be precisely controlled by variation of the unimer-to-crystallite seed ratio. Samples of the highly monodisperse nanocylinders of different lengths that are accessible using this approach have been shown to exhibit distinct liquid-crystalline alignment behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Realization of monodisperse cylindrical micelles through bidirectional epitaxial growth from small, uniform, stub-like crystallites as initiators for the crystallization-driven living self-assembly of PFS block copolymers with a crystallizable, core-forming block.
Figure 2: Characterization of PFS28-b-PDMS560 cylindrical micelles before and after sonication.
Figure 3: The length of monodisperse cylindrical micelles grown from small, uniform PFS stub-like PFS-b-PDMS crystallites is linearly dependent on the amount of block copolymers added.
Figure 4: Electric field response of PFS-containing cylindrical micelles as a 50 mg ml−1 colloidal solution of 731 nm cylinders in decane as studied by SAXS.

Similar content being viewed by others

References

  1. Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature Mater. 8, 781–792 (2009).

    Article  CAS  Google Scholar 

  2. Douglas, T. & Young, M. Viruses: making friends with old foes. Science 312, 873–875 (2006).

    Article  CAS  Google Scholar 

  3. Mao, C. et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303, 213–217 (2004).

    Article  CAS  Google Scholar 

  4. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  5. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotech. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  6. Tseng, R. J. et al. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nature Nanotech. 1, 72–77 (2006).

    Article  CAS  Google Scholar 

  7. Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    Article  CAS  Google Scholar 

  8. Zha, L., Zhang, Y., Yang, W. & Fu, S. Monodisperse temperature-sensitive microcontainers. Adv. Mater. 14, 1090–1092 (2002).

    Article  CAS  Google Scholar 

  9. Yi, G.-R. et al. Generation of uniform colloidal assemblies in soft microfluidic devices. Adv. Mater. 15, 1300–1304 (2003).

    Article  CAS  Google Scholar 

  10. Fernandez-Nieves, A. et al. Optically anisotropic colloids of controllable shape. Adv. Mater. 17, 680–684 (2005).

    Article  CAS  Google Scholar 

  11. Zoldesi, C. I. & Imhof, A. Synthesis of monodisperse colloidal spheres, capsules and microballoons by emulsion templating. Adv. Mater. 17, 924–928 (2005).

    Article  CAS  Google Scholar 

  12. Yuan, J. et al. Water-soluble organo–silica hybrid nanowires. Nature Mater. 7, 718–722 (2008).

    Article  CAS  Google Scholar 

  13. Qian, J., Zhang, M., Manners, I. & Winnik, M. A. Nanofiber micelles from the self-assembly of block copolymers. Trends Biotechnol. 28, 84–92 (2010).

    Article  CAS  Google Scholar 

  14. Gohy, J.-F. Block copolymer micelles. Adv. Polym. Sci. 190, 65–136 (2005).

    Article  CAS  Google Scholar 

  15. Alexandridis, P. & Lindman, B. Amphiphilic Block Copolymers: Self-Assembly and Applications (Elsevier, 2000).

  16. Zhang, L. & Eisenberg, A. Multiple morphologies of ‘crew-cut’ aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268, 1728–1731 (1995).

    Article  CAS  Google Scholar 

  17. Liu, G. et al. Polystyrene-block-poly(2-cinnamoylethyl methacrylate) nanofibers—preparation, characterization and liquid crystalline properties. Chem. Eur. J. 5, 2740–2749 (1999).

    Article  CAS  Google Scholar 

  18. Jain, S. & Bates, F. S. On the origins of morphological complexity in block copolymer surfactants. Science 300, 460–464 (2003).

    Article  CAS  Google Scholar 

  19. Pochan, D. J. et al. Toroidal triblock copolymer assemblies. Science 306, 94–97 (2004).

    Article  CAS  Google Scholar 

  20. Cui, H. et al. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    Article  CAS  Google Scholar 

  21. Hu, J., Liu, G. & Nijkang, G. Hierarchical interfacial assembly of ABC triblock copolymer. J. Am. Chem. Soc. 130, 3236–3237 (2008).

    Article  CAS  Google Scholar 

  22. Walther, A. et al. Self-assembly of janus cylinders into hierarchical superstructures. J. Am. Chem. Soc. 131, 4720–4728 (2009).

    Article  CAS  Google Scholar 

  23. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotech. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

  24. Thio, Y. S., Wu, J. & Bates, F. S. Epoxy toughening using low molecular weight poly(hexylene oxide)–poly(ethylene oxide) diblock copolymers. Macromolecules 39, 7187–7189 (2006).

    Article  CAS  Google Scholar 

  25. Cao, L. et al. Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: fabrication of ceramic nanolines on semiconducting substrates. Adv. Funct. Mater. 13, 271–276 (2003).

    Article  CAS  Google Scholar 

  26. Yu, S. M. et al. Smectic ordering in solutions and films of a rod-like polymer owing to monodispersity of chain length. Nature 389, 167–170 (1997).

    Article  CAS  Google Scholar 

  27. Joannic, R., Auvray, L. & Lasic, D. D. Monodisperse vesicles stabilized by grafted polymers. Phys. Rev. Lett. 78, 3402–3405 (1997).

    Article  CAS  Google Scholar 

  28. Yan, X., Liu, G., Haeussler, M. & Tang, B. Z. Water-dispersible polymer/Pd/Ni hybrid magnetic nanofibers. Chem. Mater. 17, 6053–6059 (2005).

    Article  CAS  Google Scholar 

  29. Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    Article  CAS  Google Scholar 

  30. Massey, J. A. et al. Self-assembly of organometallic block copolymers: the role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J. Am. Chem. Soc. 122, 11577–11584 (2000).

    Article  CAS  Google Scholar 

  31. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  Google Scholar 

  32. Guerin, G., Wang, H., Manners, I. & Winnik, M. A. Fragmentation of fiber-like structures: sonication studies of cylindrical block copolymer micelles and behavioral comparisons to biological fibrils. J. Am. Chem. Soc. 130, 14763–14771 (2008).

    Article  CAS  Google Scholar 

  33. Israelachvili, J. Intermolecular and Surface Forces, 2nd edn (Academic Press, 1992).

  34. Kato, T., Mizoshita, N. & Kishimoto, K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006).

    Article  CAS  Google Scholar 

  35. Oldenbourg, R., Wen, X., Meyer, R. B. & Caspar, D. L. D. Orientational distribution function in nematic tobacco-mosaic-virus liquid-crystals measured by X-ray diffraction. Phys. Rev. Lett. 61, 1851–1854 (1988).

    Article  CAS  Google Scholar 

  36. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  CAS  Google Scholar 

  37. Fu, J. et al. Self-assembly of crystalline-coil diblock copolymer in solvents with varying selectivity: from spinodal-like aggregates to spheres, cylinders and lamellae. Macromolecules 37, 976–986 (2004).

    Article  CAS  Google Scholar 

  38. Zhang, J., Wang, L.-Q., Wang, H. & Tu, K. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide). Biomacromolecules 7, 2492–2500 (2006).

    Article  CAS  Google Scholar 

  39. Portinha, D. et al. Stable dispersions of highly anisotropic nanoparticles formed by cocrystallization of enantiomeric diblock copolymers. Macromolecules 40, 4037–4042 (2007).

    Article  CAS  Google Scholar 

  40. Schmalz, H. et al. Thermo-reversible formation of wormlike micelles with a microphase-separated corona from a semicrystalline triblock terpolymer. Macromolecules 41, 3235–3242 (2008).

    Article  CAS  Google Scholar 

  41. Lazzari, M., Scalarone, D., Vazquez-Vazquez, C. & Lopez-Quintela, M. A. Cylindrical micelles from the self-assembly of polyacrylonitrile-based diblock copolymers in nonpolar selective solvents. Macromol. Rapid Commun. 29, 352–357 (2008).

    Article  CAS  Google Scholar 

  42. Du, Z.-X., Xu, J.-T. & Fan, Z.-Q. Regulation of micellar morphology of PCL-b-PEO block copolymers by crystallization temperature. Macromol. Rapid Commun. 29, 467–471 (2008).

    Article  CAS  Google Scholar 

  43. Mihut, A. M., Drechsler, M., Möller, M. & Ballauff, M. Sphere-to-rod transitions of micelles formed by the semicrystalline polybutadiene-block-poly(ethylene oxide) block copolymer in a selective solvent. Macromol. Rapid Commun. 31, 449–453 (2010).

    Article  CAS  Google Scholar 

  44. Gädt, T. et al. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nature Mater. 8, 144–150 (2009).

    Article  Google Scholar 

  45. Wang, H. et al. Cylindrical block co-micelles with spatially selective functionalization by nanoparticles. J. Am. Chem. Soc. 129, 12924–12925 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.B.G. is grateful to the Natural Sciences and Engineering Research Council (NSERC) of Canada for a postdoctoral fellowship. T.G. is grateful to the Deutsche Forschungsgemeinschaft for a postdoctoral fellowship. I.M. thanks the European Union for a Marie Curie Chair, a Reintegration Grant and an Advanced Investigator Grant, and also the Royal Society for a Wolfson Research Merit Award. We also thank G. Guerin for helpful discussions. M.A.W. also thanks NSERC for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.B.G. and T.G. share first authorship, and were primarily responsible for the experimental results, which included contributions from G.R.W., L.C. and J.M.M. R.M.R. collected and analysed the SAXS data. J.B.G., T.G., R.M.R., M.A.W. and I.M. were responsible for preparing the manuscript and all authors have agreed to the content of the manuscript.

Corresponding authors

Correspondence to Robert M. Richardson, Mitchell A. Winnik or Ian Manners.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilroy, J., Gädt, T., Whittell, G. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nature Chem 2, 566–570 (2010). https://doi.org/10.1038/nchem.664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing