Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchical functional gradients of pH-responsive self-assembled monolayers using dynamic covalent chemistry on surfaces

An Erratum to this article was published on 01 December 2009

This article has been updated

Abstract

Surface chemistry is an important field of research, especially for the study and design of (bio)nanostructures in which nearly every atom lies at an interface. Here we show that dynamic covalent chemistry is an efficient tool for functionalizing surfaces in such a way that their interfacial properties can be varied controllably in space and time. Modulation of pH is used to tune the fast, selective and reversible attachment of functional amines (with different pKa values) to an aldehyde-coated surface. To illustrate the potential of this technique, we developed dynamic self-assembled monolayers (‘DynaSAMs’), which enable the hierarchical construction of mixed gradients comprising either small functional molecules or proteins. Control of the (bio)chemical composition at any point on the surface potentially provides a simple bottom-up method to access numerous surface patterns with a broad range of functionalities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General principle of the design of DynaSAMs and the formation of chemical gradients.
Figure 2: Surface characterization of DynaSAMs.
Figure 3: Spectral characterization of a mixed Cy3–Cy5 gradient.
Figure 4: Quantitative measurements of a mixed Cy3–Cy5 gradient.
Figure 5: Characterization of a mixed avidin–streptavidin gradient.
Figure 6: Characterization of mixed hydrophilic–hydrophobic gradients.

Similar content being viewed by others

Change history

  • 08 November 2009

    In the version of this Article originally published, the units on the x axes of Figs 4a and 5c should have read (mm). This has been corrected on the HTML and PDF versions of the Article.

References

  1. Rowan, S. J., Cantrill, S. J., Cousins, G. R., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 5, 898–952 (2002).

    Article  Google Scholar 

  2. Lehn, J.-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).

    Article  CAS  Google Scholar 

  3. Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    Article  CAS  Google Scholar 

  4. Severin, K. The advantage of being virtual–target-induced adaptation and selection in dynamic combinatorial libraries. Chem. Eur. J. 10, 2565–2580 (2004).

    Article  CAS  Google Scholar 

  5. Ludlow, R. F. et al. Host–guest binding constants can be estimated directly from the product distributions of dynamic combinatorial libraries. Angew. Chem. Int. Ed. 46, 5762–5764 (2007).

    Article  CAS  Google Scholar 

  6. Lehn, J.-M. & Eliseev, A. V. Dynamic combinatorial chemistry. Science 291, 2331–2332 (2001).

    Article  CAS  Google Scholar 

  7. Ramström, O. & Lehn, J.-M. Drug discovery by dynamic combinatorial libraries. Nature Rev. Drug Discov. 1, 26–36 (2002).

    Article  Google Scholar 

  8. Swann, P. G. et al. Nonspecific protease-catalyzed hydrolysis synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Biopolymers 40, 617–625 (1996).

    Article  CAS  Google Scholar 

  9. Huc, I. & Lehn, J.-M. Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl Acad. Sci. USA 94, 2106–2110 (1997).

    Article  CAS  Google Scholar 

  10. Hochgurtel, M. et al. Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries. Proc. Natl Acad. Sci. USA 99, 3382–3387 (2002).

    Article  Google Scholar 

  11. Zameo, S., Vauzeilles, B. & Beau, J.-M. Dynamic combinatorial chemistry: lysozyme selects an aromatic motif that mimics a carbohydrate residue. Angew. Chem. Int. Ed. 44, 965–969 (2005).

    Article  CAS  Google Scholar 

  12. Cheeseman, J. D., Corbett, A. D., Gleason, J. L. & Kazlaukas, R. J. Receptor-assisted combinatorial chemistry: thermodynamics and kinetics in drug discovery. Chem. Eur. J. 11, 1708–1716 (2005).

    Article  CAS  Google Scholar 

  13. Shi, B., Steenson, R., Campopiani, D. J. & Greaney, M. F. Discovery of glutathione S-transferase inhibitors using dynamic combinatorial chemistry. J. Am. Chem. Soc. 128, 8459–8467 (2006).

    Article  CAS  Google Scholar 

  14. Vongvilai, P., Angelin, M., Larsson, R. & Ramström, O. Dynamic combinatorial resolution: direct asymmetric lipase-mediated screening of a dynamic nitroaldol library. Angew. Chem. Int. Ed. 46, 948–950 (2007).

    Article  CAS  Google Scholar 

  15. Brady, P. A. & Sanders, J. K. M. Thermodynamically controlled cyclisation and interconversion of oligocholates: metal ion template ‘living’ macrolactonisation. J. Chem. Soc. Perkin Trans. I 3237–3253 (1997).

  16. Fuchs, B., Nelson, A., Star, A., Stoddart, J.-F. & Vidal, S. B. Amplification of dynamic chiral crown ether complexes during cyclic acetal formation. Angew. Chem. Int. Ed. 42, 4220–4224 (2003).

    Article  CAS  Google Scholar 

  17. Albrecht, M. et al. Selecting different complexes from a dynamic combinatorial library of coordination compounds. Angew. Chem. Int. Ed. 43, 6662–6666 (2004).

    Article  CAS  Google Scholar 

  18. Saur, B., Scopelliti, R. & Severin, K. Utilization of self-sorting processes to generate dynamic combinatorial libraries with new network topologies. Chem. Eur. J. 12, 1058–1066 (2006).

    Article  CAS  Google Scholar 

  19. Nitschke, J. R. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. Acc. Chem. Res. 40, 103–112 (2007).

    Article  CAS  Google Scholar 

  20. Xu, S. & Giuseppone, N. Self-duplicating amplification in a dynamic combinatorial library. J. Am. Chem. Soc. 130, 1826–1827 (2008).

    Article  CAS  Google Scholar 

  21. Sadownik, J. W. & Philp, D. A simple synthetic replicator amplifies itself from a dynamic reagent pool. Angew. Chem. Int. Ed. 47, 9965–9970 (2008).

    Article  CAS  Google Scholar 

  22. Nguyen, R., Allouche, L., Buhler, E. & Giuseppone, N. Dynamic combinatorial evolution within self-replicating self-assemblies. Angew. Chem. Int. Ed. 48, 1093–1096 (2009).

    Article  CAS  Google Scholar 

  23. Giuseppone, N., Schmitt, J.-L., Schwartz, E. & Lehn, J.-M. Scandium(iii) catalysis of transimination reactions. Independent and constitutionally coupled reversible processes. J. Am. Chem. Soc. 127, 5528–5539 (2005).

    Article  CAS  Google Scholar 

  24. Giuseppone, N. & Lehn, J.-M. Protonic and temperature modulation of constituent expression by component selection in a dynamic combinatorial library of imines. Chem. Eur. J. 12, 1715–1722 (2006).

    Article  CAS  Google Scholar 

  25. Giuseppone, N., Fuks, G. & Lehn, J.-M. Tunable fluorene-based dynamers through constitutional dynamic chemistry. Chem. Eur. J. 12, 1723–1735 (2006).

    Article  CAS  Google Scholar 

  26. Umehara, T., Kawai, H., Fujiwara, K. & Suzuki, T. Entropy- and hydrolytic-driven positional switching of macrocycle between imine- and hydrogen-bonding stations in rotaxane-based molecular shuttles. J. Am. Chem. Soc. 130, 13981–13998 (2008).

    Article  CAS  Google Scholar 

  27. Giuseppone, N. & Lehn, J.-M. Constitutional dynamic self-sensing in a zinc(ii)/polyiminofluorenes system. J. Am. Chem. Soc. 126, 11448–11449 (2004).

    Article  CAS  Google Scholar 

  28. Giuseppone, N., Schmitt, J.-L. & Lehn, J.-M. Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of 2 × 2 grid-like arrays under the pressure of metal ion coordination. J. Am. Chem. Soc. 128, 16748–16763 (2006).

    Article  CAS  Google Scholar 

  29. Giuseppone, N., Schmitt, J.-L., Allouche, L. & Lehn, J.-M. DOSY NMR experiments as a tool for the analysis of constitutional and motional dynamic processes: implementation for the driven evolution of dynamic combinatorial libraries of helical strands. Angew. Chem. Int. Ed. 47, 2235–2239 (2008).

    Article  CAS  Google Scholar 

  30. Zhang, W. & Moore, J. S. Arylene ethynylene macrocycles prepared by precipitation-driven alkyne metathesis. J. Am. Chem. Soc. 126, 12796 (2004).

    Article  CAS  Google Scholar 

  31. Isawa, N. & Takahagi, H. Boronic esters as a system for crystallization-induced dynamic self-assembly equipped with an ‘on–off’ switch for equilibration. J. Am. Chem. Soc. 129, 7754–7755 (2007).

    Article  Google Scholar 

  32. Barboiu, M., Dimitru, F., Legrand, Y.-M., Petit, E. & van der Lie, A. Self-sorting of equilibrating metallosupramolecular DCLs via constitutional crystallization. Chem. Commun. 2192–2194 (2009).

  33. Liu, X. J. & Warmuth, R. Solvent effects in thermodynamically controlled multicomponent nanocage syntheses. J. Am. Chem. Soc. 128, 14120–14127 (2006).

    Article  CAS  Google Scholar 

  34. Sreenivasachary, N. & Lehn, J.-M. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine quartet formation. Proc. Natl Acad. Sci. USA 102, 5938–5943 (2005).

    Article  CAS  Google Scholar 

  35. Giuseppone, N. & Lehn, J.-M. Electric-field modulation of component exchange in constitutional dynamic liquid crystals. Angew. Chem. Int. Ed. 45, 4619–4624 (2006).

    Article  CAS  Google Scholar 

  36. Herrmann, A., Giuseppone, N. & Lehn, J.-M. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases. Chem. Eur. J. 15, 117–124 (2009).

    Article  CAS  Google Scholar 

  37. Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    Article  CAS  Google Scholar 

  38. Ladame, S. Dynamic combinatorial chemistry: on the road to fulfilling the promise. Org. Biomol. Chem. 2, 219–226 (2008).

    Article  Google Scholar 

  39. Sagiv, J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc. 102, 92–98 (1980).

    Article  CAS  Google Scholar 

  40. Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983).

    Article  CAS  Google Scholar 

  41. Decher, G. & Hong, J. D. Buildup of ultrathin films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. – Macromol. Symp. 46, 321–327 (1991).

    Article  CAS  Google Scholar 

  42. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  43. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  44. Onclin, S., Ravoo, B. J. & Reinhoudt, D. N. Engineering silicon oxide surfaces using self-assembled monolayers. Angew. Chem. Int. Ed. 44, 6282–6304 (2005).

    Article  CAS  Google Scholar 

  45. Ludden, M. J. W., Reinhoudt, D. N. & Huskens, J. Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chem. Soc. Rev. 35, 1122–1134 (2006).

    Article  CAS  Google Scholar 

  46. Xia, Y. N. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed. 37, 551–575 (1998).

    Article  Google Scholar 

  47. Rozkiewicz, D. I., Ravoo, B. J. & Reinhoudt, D. N. Reversible covalent patterning of self-assembled monolayers on gold and silicon oxide surfaces. Langmuir 21, 6337–6343 (2005).

    Article  CAS  Google Scholar 

  48. Chang, T., Rozkiewicz, D. I., Ravoo, B. J., Meijer, E. W. & Reinhoudt, D. N. Directional movement of dendritic macromolecules on gradient surfaces. Nano Lett. 7, 978–980 (2007).

    Article  CAS  Google Scholar 

  49. Genzer, J. & Bhat, R. R. Surface-bound soft matter gradients. Langmuir 24, 2294–2317 (2008).

    Article  CAS  Google Scholar 

  50. Zucker, R. M., Rigby, P., Clements, I., Salmon, W. & Chua, M. Reliability of confocal microscopy spectral imaging systems: use of multispectral beads. Cytometry A 71, 174–189 (2007).

    Article  Google Scholar 

  51. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959).

    Article  CAS  Google Scholar 

  52. Rodahl, M., Hook, F., Krozer, A., Brzezinki, P. & Kasemo, B. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66, 3924–3930 (1995).

    Article  CAS  Google Scholar 

  53. Laitinen, O., Nordlund, H. R., Hytönen, V. P. & Kulomaa, M. S. Brave new (strept)avidins in biotechnology. Trends Biotech. 25, 269–277 (2007).

    Article  CAS  Google Scholar 

  54. Wide, L. Inventions leading to the development of the diagnostic test kit industry – from the modern pregnancy test to the sandwich assays. Ups. J. Med. Sci. 110, 193–216 (2005).

    Article  Google Scholar 

  55. Livnah, O., Bayer, E. A., Wilchek, M. & Sussman, J. L. Three-dimensional structure of avidin and avidin–biotin complex. Proc. Natl Acad. Sci. USA 90, 5076–5080 (1993).

    Article  CAS  Google Scholar 

  56. Argarana, C. E., Kuntz, I. D., Birken, S., Axel, R. & Cantor, C. R. Molecular cloning and nucleotide sequence of the streptavidin gene. Nucl. Acid Res. 14, 1871–1882 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dedicated to Jean-Marie Lehn on the occasion of his 70th birthday. We thank the Centre National de la Recherche Scientifique, the International Centre for Frontier Research in Chemistry and the University of Strasbourg for financial support. This work was supported by a doctoral fellowship from the French Ministry of Research (L.T.). G.D. thanks the Institut Universitaire de France. We are also grateful to E. Moulin, O. Felix, M. Maaloum, C. Contal, C. Marques and M. Basler for help at various stages.

Author information

Authors and Affiliations

Authors

Contributions

N.G. conceived the work and designed the experiments. L.T. performed the experiments. L.T., A.P.S., G.D. and N.G. analysed the data. A.P.S. and G.D. contributed materials and analysis tools and suggested supplementary experiments. N.G. wrote the paper. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Nicolas Giuseppone.

Supplementary information

Supplementary information

Supplementary information (PDF 851 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tauk, L., Schröder, A., Decher, G. et al. Hierarchical functional gradients of pH-responsive self-assembled monolayers using dynamic covalent chemistry on surfaces. Nature Chem 1, 649–656 (2009). https://doi.org/10.1038/nchem.400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing