Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’

Abstract

Metallosupramolecular chemistry relies on self-assembly processes in which complicated species form through labile dative-covalent interactions. Two remarkable areas of this chemistry are the synthesis of topologically complicated threaded assemblies and of three-dimensional (3D) polyhedral assemblies. Very few polyhedral 3D metallosupramolecular assemblies show threaded motifs within them. Here we report an example of a new type of threaded 3D metallosupramolecular assembly built from four organic ligands and four palladium ions, a Pd4L4 so-called ‘Solomon's cube’ in which interweaving and twisting of the ligands form both Solomon's links and figure-of-eight ring motifs. In the solid state, six of these Pd4L4 tetramers assemble into a hollow spheroid that closely resembles a stellated truncated hexahedron.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The (Pd4(1)4(NO3)2(H2O)2)6+ tetramer from the crystal structure of (Pd4(1)4(NO3)2(H2O)2)·6(NO3n(DMSO) (2).
Figure 2: Topological aspects of the ‘Solomon's cube’ of (Pd4(1)4(NO3)2(H2O)2)6+.
Figure 3: The stellated nature of the secondary solid-state assembly within complex 2.

Similar content being viewed by others

References

  1. Steed, J. W. & Atwood, J. L. Supramolecular Chemistry (Wiley, 2000).

    Google Scholar 

  2. Sauvage, J.-P. & Dietrich-Buchecker, C. Molecular Catenanes, Rotaxanes and Knots. A Journey Through the World of Molecular Topology (Wiley, 1999).

    Book  Google Scholar 

  3. Pentecost, C. D. et al. A molecular Solomon link. Angew. Chem. Int. Ed. 46, 218–222 (2007).

    Article  CAS  Google Scholar 

  4. Niergarten, J.-F., Dietrich-Buchecker, C. O. & Sauvage, J.-P. Synthesis of a doubly interlocked [2]-catenane. J. Am. Chem. Soc. 116, 375–376 (1994).

    Article  Google Scholar 

  5. Ibukuro, F., Fujita, M., Yamaguchi, K. & Sauvage, J.-P. Quantitative and spontaneous formation of a doubly interlocking [2]catenane using copper(I) and palladium(II) as templating and assembling centers. J. Am. Chem. Soc. 121, 11014–11015 (1999).

    Article  CAS  Google Scholar 

  6. McArdle, C. P., Vittal, J. J. & Puddephatt, R. J. Molecular topology: easy self-assembly of an organometallic doubly braided [2]catenane. Angew. Chem. Int. Ed. 39, 3819–3822 (2000).

    Article  CAS  Google Scholar 

  7. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  Google Scholar 

  8. Swiegers, G. F. & Malefetse, T. J. Classification of coordination polygons and polyhedra according to their mode of self-assembly. 2. Review of the literature. Coord. Chem. Rev. 225, 91–121 (2002).

    Article  CAS  Google Scholar 

  9. Seidel, S. R. & Stang, P. J. High-symmetry coordination cages via self-assembly. Acc. Chem. Res. 35, 972–983 (2002).

    Article  CAS  Google Scholar 

  10. Fujita, M. et al. Molecular paneling via coordination. Chem. Commun. 509–518 (2001).

  11. Du, S. M., Stollar, B. D. & Seeman, N. C. A synthetic DNA molecule in three knotted topologies. J. Am. Chem. Soc. 117, 1194–1200 (1995).

    Article  CAS  Google Scholar 

  12. Mao, C., Sun, W. & Seeman, N. C. Assembly of Borromean rings from DNA. Nature 386, 137–138 (1997).

    Article  CAS  Google Scholar 

  13. Zhang, Y. & Seeman, N. C. Construction of a DNA truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

    Article  CAS  Google Scholar 

  14. Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999).

    Article  CAS  Google Scholar 

  15. Westcott, A., Fisher, J., Harding, L. P., Rizkallah, P. & Hardie, M. J. Self-assembly of a 3-D triply interlocked chiral [2]catenane. J. Am. Chem. Soc. 130, 2950–2951 (2008).

    Article  CAS  Google Scholar 

  16. Wang, L., Vysotsky, M. O., Bogdan, A., Bolte, M. & Bohmer, V. Multiple catenanes derived from calix[4]arenes. Science 304, 1312–1314 (2004).

    Article  CAS  Google Scholar 

  17. Wikoff, W. R. et al. Topologically linked protein rings in the Bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  Google Scholar 

  18. Collet, A. Cyclotriveratrylenes and cryptophanes. Tetrahedron 43, 5725–5759 (1987).

    Article  CAS  Google Scholar 

  19. Huerta, E., Cequier, E. & de Mendoza, J. Preferential separation of fullerene[84] from fullerene mixtures by encapsulation. Chem. Commun. 5016–5018 (2007).

  20. Dam, H. H., Reinhoudt, D. N. & Verboom, W. Influence of the platform in multicoordinate ligands for actinide partitioning. New J. Chem. 31, 1620–1632 (2007).

    Article  CAS  Google Scholar 

  21. Zhang, S. & Echegoyen, L. Selective anion sensing by a tris-amide CTV derivative: 1H NMR titration, self-assembled monolayers, and impedance spectroscopy. J. Am. Chem. Soc. 127, 2006–2011 (2005).

    Article  CAS  Google Scholar 

  22. Gawenis, J. A., Holman, K. T., Atwood, J. L. & Jurisson, S. S. Extraction of pertechnetate and perrhenate from water with deep-cavity [CpFe(arene)]+-derivatized cyclotriveratrylenes. Inorg. Chem. 41, 6028–6031 (2002).

    Article  CAS  Google Scholar 

  23. Bardelang, D., Camerel, F., Ziessel, R., Schmutz, M. & Hannon, M. J. New organogelators based on cyclotriveratrylene platforms bearing 2-dimethylacetal-5-carbonylpyridine fragments. J. Mater. Chem. 18, 489–494 (2008).

    Article  CAS  Google Scholar 

  24. Zhong, Z., Ikeda, A., Shinkai, S., Sakamoto, S. & Yamaguchi, K. Creation of novel chiral cryptophanes by a self-assembling method utilizing a pyridyl–Pd(II) interaction. Org. Lett. 3, 1085–1087 (2001).

    Article  CAS  Google Scholar 

  25. Carruthers, C. et. al. The dimeric ‘hand-shake’ motif in complexes and metallo-supramolecular assemblies of cyclotriveratrylene-based ligands. Chem. Eur. J. 14, 10286–10296 (2008).

    Article  CAS  Google Scholar 

  26. Ronson, T. K., Fisher, J., Harding, L. P. & Hardie, M. J. Star-burst prisms with cyclotriveratrylene-type ligands: a [Pd6L8]12+ stella octangula. Angew. Chem. Int. Ed. 46, 9086–9088 (2007).

    Article  CAS  Google Scholar 

  27. Sumby, C. J. & Hardie, M. J. Capsules and star-burst polyhedra: an Ag2L2 capsule and tetrahedral Ag4L4 metallo-supramolecular prism with cyclotriveratrylene-type ligands. Angew. Chem. Int. Ed. 44, 6395–6399 (2005).

    Article  CAS  Google Scholar 

  28. Xu, D. & Warmuth, R. Edge-directed dynamic covalent synthesis of a chiral nanocube. J. Am. Chem. Soc. 130, 7520–7521 (2008).

    Article  CAS  Google Scholar 

  29. Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. Self-assembly of a novel pentanuclear centred-tetrahedral silver species. Chem. Commun. 1056–1057 (2004).

  30. Allouche, L., Marquis, A. & Lehn, J.-M. Discrimination of metallo supramolecular architectures in solution by using diffusion ordered spectroscopy (DOSY) experiments: double-stranded helicates of different lengths. Chem. Eur. J. 12, 7520–7525 (2006).

    Article  CAS  Google Scholar 

  31. Megyes, T. et al. X-ray diffraction and DOSY NMR characterization of self-assembled supramolecular metallocyclic species in solution. J. Am. Chem. Soc. 127, 10731–10738 (2005).

    Article  CAS  Google Scholar 

  32. Adams, C. C. The Knot Book. An Elementary Introduction to the Mathematical Theory of Knots (W. H. Freeman, 1994).

    Google Scholar 

  33. Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    Article  CAS  Google Scholar 

  34. Orr, G. W., Barbour, L. J. & Atwood, J. L. Controlling molecular self-organization: formation of nanometer-scale spheres and tubules. Science 285, 1049–1052 (1999).

    Article  CAS  Google Scholar 

  35. Atwood, J. L. et al. Towards mimicking viral geometry with metal–organic systems. J. Am. Chem. Soc. 126, 13170–13171 (2004).

    Article  CAS  Google Scholar 

  36. McKinlay, R. M., Cave, G. W. V. & Atwood, J. L. Supramolecular blueprint approach to metal-coordinated capsules. Proc. Natl Acad. Sci. USA 102, 5944–5948 (2005).

    Article  CAS  Google Scholar 

  37. Childs, L. J., Alcock, N. W. & Hannon, M. J. Assembly of a nanoscale chiral ball through supramolecular aggregation of bowl-shaped triangular helicates. Angew. Chem. Int. Ed. 41, 4244–4247 (2002).

    Article  CAS  Google Scholar 

  38. Vazquez, M. et al. Non-covalent aggregation of discrete metallo-supramolecular helicates into higher assemblies by aromatic pathways: structural and chemical studies of new aniline-based neutral metal(II) dihelicates. Eur. J. Inorg. Chem. 3479–3490 (2005).

    Article  Google Scholar 

  39. Pascu, M., Clarkson, G. J., Kariuki, B. M. & Hannon, M. J. Aggregation of imine-based metallo-supramolecular architectures through π–π interactions. Dalton Trans. 2635–2642 (2006).

  40. Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. Aggregation of metallo-supramolecular architectures by metallo-assembled hydrogen bonding sites. Chem. Commun. 2666–2667 (2003).

  41. Vazquez, M. et al. A 3D network of helicates fully assembled by π-stacking interactions. Chem. Commun. 1840–1841 (2003).

  42. Breuning, E., Ziener, U., Lehn, J.-M., Wegelius, E. & Rissanen, K. Two-level self-organisation of arrays of [2 × 2] grid-type tetranuclear metal complexes by hydrogen bonding. Eur. J. Inorg. Chem. 1515–1521 (2001).

  43. Ziessel, R. Schiff-based bipyridine ligands. Unusual coordination features and mesomorphic behaviour. Coord. Chem. Rev. 216, 195–223 (2001).

    Article  Google Scholar 

  44. Sheldrick, G. M. SHELXS-97 (Univ. Göttingen, 1990).

    Google Scholar 

  45. Sheldrick, G. M. SHELXL-97 (Univ. Göttingen, 1997).

    Google Scholar 

  46. Spek, A. & van der Sluis, P. BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr. A 46, 194–201 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC for funding this research, STFC Daresbury laboratory for access to microdiffraction facilities and I. Blakeley for microanalysis.

Author information

Authors and Affiliations

Authors

Contributions

T.K.R. performed most experiments, interpreted results and co-wrote the paper. J.F. performed and interpreted 2D, diffusion and variable temperature NMR experiments. L.P.H. performed MS experiments. P.J.R. and J.E.W. maintained synchrotron facilities and assisted in data treatment. M.J.H. interpreted the results and wrote the paper.

Corresponding author

Correspondence to Michaele J. Hardie.

Supplementary information

Supplementary information

Supplementary information (PDF 1176 kb)

Supplementary information

Crystallographic data for complex 2 (CIF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronson, T., Fisher, J., Harding, L. et al. Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’. Nature Chem 1, 212–216 (2009). https://doi.org/10.1038/nchem.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing