Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time

Abstract

A combination of the advantages of homogeneous and heterogeneous catalysis could enable the development of sustainable catalysts with novel reactivity and selectivity. Although heterogeneous catalysts are often recycled more easily than their homogeneous counterparts, they can be difficult to apply in traditional organic reactions and modification of their properties towards a desired reactivity is, at best, complex. In contrast, tuning the properties of homogeneous catalysts by, for example, modifying the ligands that coordinate a metal centre is better understood. Here, using olefin cyclopropanation reactions catalysed by dendrimer-encapsulated Au nanoclusters as examples, we demonstrate that changing the dendrimer properties allows the catalytic reactivity to be tuned in a similar fashion to ligand modification in a homogeneous catalyst. Furthermore, we show that these heterogeneous catalysts employed in a fixed-bed flow reactor allow fine control over the residence time of the reactants and thus enables the control over product distribution in a way that is not easily available for homogeneous catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Batch measurements of cyclopropane 2 yield as function of reaction time at r.t.
Figure 2: Flow measurements of cyclopropane 2 yield as function of time on-stream.
Figure 3: Flow measurements of the conversion and selectivity of the cascade cyclopropanation-rearrangement reaction as a function of reactant residence time.

Similar content being viewed by others

References

  1. Astruc, D., Lu, F. & Aranzaes, J. R. Nanoparticles as recyclable catalysts. The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852–7872 (2005).

    Article  CAS  Google Scholar 

  2. Bäckvall, J. E. International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (Topics in Catalysis 53, Springer, 2010).

    Google Scholar 

  3. Thomas, J. M., Raja, R. & Lewis, D. W. Single site heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 6456–6482 (2005).

    Article  CAS  Google Scholar 

  4. Copéret, C., Chabanas, M., Saint-Arroman, R. P. & Basset, J. M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 42, 156–181 (2003).

    Article  Google Scholar 

  5. Chabanas, M., Baudouin, A., Copéret, C. & Basset, J. M. A highly active well-defined rhenium heterogeneous catalyst for olefin metathesis prepared via surface organometallic chemistry. J. Am. Chem. Soc. 123, 2062–2063 (2001).

    Article  CAS  Google Scholar 

  6. Dufaud, V. & Basset J. M. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica–alumina: a step toward polyolefin degradation by the microscopic reverse of Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 37, 806–810 (1998).

    Article  CAS  Google Scholar 

  7. Patil, N. T. Heterogeneous π-acid catalysis with metal nanoparticles. ChemCatChem 3, 1121–1125 (2011).

    Article  CAS  Google Scholar 

  8. de Almeida, M. P. & Carabineiro, S. A. C. The best of two worlds from the gold catalysis universe: Making homogeneous heterogeneous. ChemCatChem 4, 18–29 (2012).

    Article  Google Scholar 

  9. Zhang, Y., Cui, X., Shi, F. & Deng, Y. Nano-gold catalysis in the fine chemical synthesis. Chem. Rev. 112, 2467–2505 (2012).

    Article  CAS  Google Scholar 

  10. Cong, H. & Porco, J. A. Jr Chemical synthesis of complex molecules using nanoparticle catalysis. ACS Catal. 2, 65–70 (2012).

    Article  CAS  Google Scholar 

  11. Efe, C., Lykakis, I. N. & Stratakis, M. Gold nanoparticles supported on TiO2 catalyse the cycloisomerisation/oxidative dimerisation of aryl propargyl ethers. Chem. Commun. 47, 803–805 (2011).

    Article  CAS  Google Scholar 

  12. Zhang, X. & Corma, A. Supported gold(III) catalysts for highly efficient three-component coupling reactions. Angew. Chem. Int. Ed. 47, 4358–4361 (2008).

    Article  Google Scholar 

  13. Grirrane, A., Corma, A. & Garcia, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 322, 1661–1664 (2008).

    Article  CAS  Google Scholar 

  14. Han, J., Liu, Y. & Guo, R. Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki–Miyaura cross-coupling reaction in water. J. Am. Chem. Soc. 131, 2060–2061 (2009).

    Article  CAS  Google Scholar 

  15. Lykakis, I. N., Psyllaki, A. & Stratakis, M. Oxidative cycloaddition of 1,1,3,3-tetramethyldisiloxane to alkynes catalyzed by supported gold nanoparticles. J. Am. Chem. Soc. 133, 10426–10429 (2011).

    Article  CAS  Google Scholar 

  16. Shimizu, K., Sato, R. & Satsuma, A. Direct C–C cross-coupling of secondary and primary alcohols catalyzed by a γ-alumina-supported silver subnanocluster. Angew. Chem. Int. Ed. 48, 3982–3986 (2009).

    Article  CAS  Google Scholar 

  17. Kim, S. W., Son, S. U., Lee, S. I., Hyeon, T. & Chung, Y. K. Cobalt on mesoporous silica: the first heterogeneous Pauson–Khand catalyst. J. Am. Chem. Soc. 122, 1550–1551 (2000).

    Article  CAS  Google Scholar 

  18. Shakeri, M., Tai, C. W., Göthelid, E., Oscarsson, S. & Bäckvall, J. E. Small Pd nanoparticles supported in large pores of mesocellular foam: an excellent catalyst for racemization of amines. Chem. Eur. J. 17, 13269–13273 (2011).

    Article  CAS  Google Scholar 

  19. Huang, W. Y et al. Highly active heterogeneous palladium nanoparticle catalysts for homogeneous electrophilic reactions in solution and the utilization of a continuous flow reactor. J. Am. Chem. Soc. 132, 16771–16773 (2010).

    Article  CAS  Google Scholar 

  20. Witham, C. A. et al. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chem. 2, 36–41 (2010).

    Article  CAS  Google Scholar 

  21. Li, Y. et al. A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. J. Am. Chem. Soc. 133, 13527–13533 (2011).

    Article  CAS  Google Scholar 

  22. Gorin, D. J. & Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007).

    Article  CAS  Google Scholar 

  23. Kim, Y. G., Oh, S. K. & Crooks, R. M. Preparation and characterization of 1–2 nm dendrimer encapsulated gold nanoparticles having very narrow size distributions. Chem. Mater. 16, 167–172 (2004).

    Article  CAS  Google Scholar 

  24. Crooks, R. M., Zhao, M. Q., Sun, L., Chechik, V. & Yeung, L. K. Dendrimer encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    Article  CAS  Google Scholar 

  25. Huang, W. Y. et al. Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett. 8, 2027–2034 (2008).

    Article  CAS  Google Scholar 

  26. Sun, L. & Crooks, R. M. Dendrimer-mediated immobilization of catalytic nanoparticles on flat, solid supports. Langmuir 18, 8231–8236 (2002).

    Article  CAS  Google Scholar 

  27. Johansson, M. J., Gorin, D. J., Staben, S. T. & Toste, F. D. Gold(I)-catalysed stereoselective olefin cyclopropanation. J. Am. Chem. Soc. 127, 18002–18003 (2005).

    Article  CAS  Google Scholar 

  28. Peng, S. et al. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 1, 229–234 (2008).

    Article  CAS  Google Scholar 

  29. Borodko, Y. et al. Spectroscopic study of platinum and rhodium dendrimer (PAMAM G4OH) compounds: structure and stability. J. Phys. Chem. C 115, 4757–4767 (2011).

    Article  CAS  Google Scholar 

  30. Kung, H. H. & Kung, M. C. Effect of surface diffusion on the selectivity of catalytic reactions. Chem. Eng. Sci. 33, 1003–1008 (1978).

    Article  CAS  Google Scholar 

  31. Sahoo, H. R., Kralj, J. G. & Jensen, K. F. Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angew. Chem. Int. Ed. 46, 5704–5708 (2007).

    Article  CAS  Google Scholar 

  32. Noel, T., Kuhn, S., Musacchio, A. J., Jensen, K. F. & Buchwald, S. L. Suzuki–Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. Angew. Chem. Int. Ed. 50, 5943–5946 (2011).

    Article  CAS  Google Scholar 

  33. Webb, D. & Jamison, T. F. Continuous flow multi-step organic synthesis. Chem. Sci. 1, 675–680 (2010).

    Article  CAS  Google Scholar 

  34. Nagaki, A. et al. Lithiation of 1,2-dichloroethene in flow microreactors: versatile synthesis of alkenes and alkynes by precise residence-time control. Angew. Chem. Int. Ed. 51, 3245–3248 (2012).

    Article  CAS  Google Scholar 

  35. Gorin, D. J., Watson, I. D. G. & Toste, F. D. Fluorenes and styrenes by Au(I)-catalyzed annulation of enynes and alkynes. J. Am. Chem. Soc. 130, 3736–3737 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the US Department of Energy (DOE) under contract DE-AC02-05CH11231. Nanoparticle TEM imaging was performed by S. Alayoglu at the Molecular Foundry Imaging Facility, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences of the US DOE under contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

E.G. and J.H.L. performed the experiments and synthesized materials, substrates and catalysts. F.D.T. and G.A.S. supervised the research. All authors contributed to the conception of the experiments, discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to F. Dean Toste or Gabor A. Somorjai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 759 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, E., Liu, JC., Toste, F. et al. Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time. Nature Chem 4, 947–952 (2012). https://doi.org/10.1038/nchem.1465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing