Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of Λ-[Ru(phen)2dppz]2+ with oligonucleotides containing TA/TA and AT/AT steps show two intercalation modes

Abstract

The ruthenium complex [Ru(phen)2(dppz)]2+ (where phen is phenanthroline and dppz dipyridophenazine is known as a ‘light switch’ complex because its luminescence in solution is significantly enhanced in the presence of DNA. This property is poised to serve in diagnostic and therapeutic applications, but its binding mode with DNA needs to be elucidated further. Here, we describe the crystal structures of the Λ enantiomer bound to two oligonucleotide duplexes. The dppz ligand intercalates symmetrically and perpendicularly from the minor groove of the d(CCGGTACCGG)2 duplex at the central TA/TA step, but not at the central AT/AT step of d(CCGGATCCGG)2. In both structures, however, a second ruthenium complex links the duplexes through the combination of a shallower angled intercalation into the C1C2/G9G10 step at the end of the duplex, and semi-intercalation into the G3G4 step of an adjacent duplex. The TA/TA specificity of the perpendicular intercalation arises from the packing of phenanthroline ligands against the adenosine residue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystallization of ruthenium cation Λ-[Ru(phen)2(dppz)]2+ and oligonucleotides.
Figure 2: Assembly of duplexes.
Figure 3: Symmetrical perpendicular intercalation geometry at the central TA/TA step.
Figure 4: CC/GG angled intercalation geometry.
Figure 5: Semi-intercalation of one phenanthroline ligand.
Figure 6: Relationship between intercalation geometry (parallel, perpendicular or angled chromophore) and P–P separation across the cavity.

Similar content being viewed by others

References

  1. Lerman, L. S. Structural considerations in the interaction of deoxyribonucleic acid and acridines. J. Mol. Biol. 3, 18–30 (1961).

    CAS  PubMed  Google Scholar 

  2. Shieh, H.-S., Berman, H. M., Dabrow, M. & Neidle, S. The structure of a drug–deoxydinucleoside phosphate complex; generalized conformational behaviour of intercalation complexes with RNA and DNA fragments. Nucleic Acids Res. 8, 85–98 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Neidle, S. The molecular basis for the action of some DNA-binding drugs. Prog. Med. Chem. 16, 151–221 (1979).

    CAS  PubMed  Google Scholar 

  4. Todd, A. K. et al. Major groove binding and ‘DNA-induced’ fit in the intercalation of a derivative of the mixed topoisomerase I/II poison N-(2-(dimethylamino)ethyl)acridine-4-carboxamide (DACA) into DNA: X-ray structure complexed to d(CG(5-BrU)ACG)2 at 1.3 Å resolution. J. Med. Chem. 42, 536–540 (1999).

    CAS  PubMed  Google Scholar 

  5. Hopcroft, N. H., Brogden, A. L., Searcey, M. & Cardin, C. J. X-ray crystallographic study of DNA duplex cross-linking: simultaneous binding to two d(CGTACG)2 molecules by a bis(9-aminoacridine-4-carboxamide) derivative. Nucleic Acids Res. 34, 6663–6672 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brogden, A. L., Hopcroft, N. H., Searcey, M. & Cardin, C. J. Ligand bridging of the DNA Holliday junction: molecular recognition of a stacked-X four-way junction by a small molecule. Angew. Chem. Int. Ed. 119, 3924–3928 (2007).

    Google Scholar 

  7. Frederick, C. A. et al. Structural comparison of anticancer drug–DNA complexes: adriamycin and daunomycin. Biochemistry 29, 2538–2549 (1990).

    CAS  PubMed  Google Scholar 

  8. Hou, M.-H., Robinson, H., Gao, Y.-G. & Wang, A. H.-J. Crystal structure of actinomycin D bound to the CTG triplet repeat sequence linked to neurological diseases. Nucleic Acids Res. 30, 4910–4917 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Garbett, N. C. & Chaires, J. B. Biophysical tools for biologists: vol. 1 in vitro techniques. Methods Cell Biol. 84, 3–23 (2008).

    CAS  PubMed  Google Scholar 

  10. Wheate, N. J., Brodie, C. R., Collins, J. G., Kemp, S. & Aldrich-Wright, J. R. DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis. Mini Rev. Med. Chem. 7, 627–648 (2007).

    CAS  PubMed  Google Scholar 

  11. Dai, J., Punchihewa, C., Mistry, P., Ooi, A. T. & Yang, D. Novel DNA bis-intercalation by MLN944, a potent clinical bisphenazine anticancer drug. J. Biol. Chem. 279, 46096–46103 (2004).

    CAS  PubMed  Google Scholar 

  12. Zeglis, B. M., Pierre, V. C. & Barton, J. K. Metallo-intercalators and metallo-insertors. Chem. Commun. 44, 4549–4696 (2007).

    Google Scholar 

  13. Liu, H.-K. & Sadler, P. J. Metal complexes as DNA intercalators. Acc. Chem. Res. 44, 349–359 (2011).

    CAS  PubMed  Google Scholar 

  14. Boer, D. R., Canals, A. & Coll, M. DNA-binding drugs caught in action: the latest 3D pictures of drug–DNA complexes. Dalton Trans. 3, 399–414 (2009).

    Google Scholar 

  15. Chambron, J. C., Sauvage, J. P., Amouyal, E. & Koffi, P. Ru(bipy)2(dypyridophenazine)2+: a complex with a long range directed charge transfer excited state. Nouv. J. Chim. 9, 527–529 (1985).

    CAS  Google Scholar 

  16. McKinley, A. W., Lincoln, P. & Tuite, E. M. Environmental effects on the photophysics of transition metal complexes with dipyrido[2,3-1:3′, 2′-c]phenazine (dppz) and related ligands. Coord. Chem. Rev. 255, 2676–2692 (2011).

    CAS  Google Scholar 

  17. Friedman, A. E. et al. A molecular light switch for DNA: Ru(bpy)2(dppz)2+ . J. Am. Chem. Soc. 112, 4960–4962 (1990).

    CAS  Google Scholar 

  18. Hiort, C., Lincoln, P. & Norden, B. DNA binding of Δ- and Λ-Ru(phen)2dppz]2+. J. Am. Chem. Soc. 115, 3448–3454 (1993).

    CAS  Google Scholar 

  19. Smith, J. A., George, M. W. & Kelly, J. M. Transient spectroscopy of dipyridophenazine metal complexes which undergo photo-induced electron transfer with DNA. Coord. Chem. Rev. 255, 2666–2675 (2011).

    CAS  Google Scholar 

  20. Elias, B. et al. Photooxidation of guanine by a ruthenium dipyridophenazine complex intercalated in a double-stranded polynucleotide monitored directly by picosecond visible and infrared transient absorption spectroscopy. Chem. Eur J. 14, 369–375 (2007).

    Google Scholar 

  21. Barton, J. K., Olmon, E. D. & Sontz, P. A. Metal complexes for DNA-mediated charge transport. Coord. Chem. Rev. 255, 619–634 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hartshorn, R. M. & Barton, J. K. Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA. J. Am. Chem. Soc. 114, 5919–5925 (1992).

    CAS  Google Scholar 

  23. Lincoln, P., Broo, A. & Nordén, B. Diastereomeric DNA-binding geometries of intercalating ruthenium (II) trischelates probed by linear dichroism: [Ru(phen)2dppz]2+ and [Ru(phen)2bdppz]2+. J. Am. Chem. Soc. 118, 2644–2653 (1996).

    CAS  Google Scholar 

  24. Haq, I. et al. Interaction of Δ- and Λ-Ru(phen)2dppz]2+ with DNA: a calorimetric and equilibrium binding study. J. Am. Chem. Soc. 117, 4788–4796 (1995).

    CAS  Google Scholar 

  25. Hall, J. P. et al. Structure determination of an intercalation ruthenium dipyridophenazine complex which kinks DNA by semiintercalation of a tetraazaphenanthrene ligand. Proc. Natl Acad. Sci. USA 108, 17610–17614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tuite, E., Lincoln, P. & Nordén, B. Photophysical evidence that Δ- and Λ-[Ru(phen)2(dppz)]2+ intercalate DNA from the minor groove. J. Am. Chem. Soc. 119, 239–240 (1997).

    CAS  Google Scholar 

  27. Thorpe, J. H., Teixeira, S. C. M., Gale, B. C. & Cardin, C. J. Structural characterization of a new crystal form of the four-way Holliday junction formed by the DNA sequence d(CCGGTACCGG)2: sequence versus lattice? Acta Crystallogr. D 58, 567–569 (2002).

    PubMed  Google Scholar 

  28. Eichman, B. F., Vargason, J. M., Mooers, B. H. M. & Shing Ho, P. The Holliday junction in an inverted repeated DNA sequence: sequence effects on the structure of four-way junctions. Proc. Natl Acad. Sci. USA 97, 3971–3976 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hays, F. A. et al. How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc. Natl Acad. Sci. USA 102, 7157–7162 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Neidle, S. Principles of Nucleic Acid Structure 144–158 (Academic Press, 2007).

  31. Pierre, V. C., Kaiser, J. T. & Barton, J. K. Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator. Proc. Natl Acad. Sci. USA 104, 429–434 (2007).

    CAS  PubMed  Google Scholar 

  32. Brennaman, M. K., Meyer, T. J. & Papanikolas, J. M. [Ru(bpy)2dppz]2+ light-switch mechanism in protic solvents as studies through temperature-dependent lifetime measurements. J. Phys. Chem. A 108, 9938–9944 (2004).

    CAS  Google Scholar 

  33. Önfeld, T., Olofsson, J., Lincoln, P. & Nordén, B. Picosescond and steady state emission of [Ru(phen)2dppz]2+ in glycerol: anomalous temperature dependence. J. Phys. Chem A 107, 1000–1009 (2003).

    Google Scholar 

  34. Olson, E. J. C. et al. First observation of the key intermediate in the ‘light-switch’ mechanism of [Ru(phen)2dppz]2+. J. Am. Chem. Soc. 119, 11458–11467 (1997).

    CAS  Google Scholar 

  35. Lincoln, P. A generalised McGhee–von Hippel method for the cooperative binding of different competing ligands to an infinite one-dimensional lattice. Chem. Phys. Lett. 288, 647–656 (1998).

    CAS  Google Scholar 

  36. Winter, G. Xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    CAS  Google Scholar 

  37. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    CAS  Google Scholar 

  38. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).

    PubMed  Google Scholar 

  39. Emsley, P., Lohkamp, B., Scott, W. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  41. Collaborative computational project, number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  42. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. D 64, 113–122 (2008).

    Google Scholar 

  43. Smith, C. K., Davies, G. J., Dodson. E. J. & Moore, M. H. DNA–nogalamycin interactions: the crystal structure of d(TGATCA) complexed with nogalamycin. Biochemistry 34, 415–425 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Doorley (formerly of Trinity College Dublin) for preparing the ruthenium complex, and P. Lincoln (Chalmers University, Gothenburg, Sweden) for reading a draft of the manuscript, very helpful discussions, and making available his unpublished observations. H.N. is funded by a joint ILL/ESRF studentship and the Chemistry Department, University of Reading. J.P.H. is funded by Diamond Light Source and a University of Reading University studentship. The authors acknowledge additional financial support from the Royal Society, the Royal Irish Academy and the Science Foundation Ireland (grant 06/RF/CHP035).

Author information

Authors and Affiliations

Authors

Contributions

C.J.C., J.P.H. and J.M.K. conceived and designed the experiments. H.N., J.P.H., K.O'S. and C.J.C. performed the experiments. G.W. and T.S. contributed analytical tools. J.P.H., H.N. and C.J.C. analysed the data. C.J.C. wrote the paper, with contributions from J.M.K., J.P.H. and H.N. All authors discussed the results and commented on the manuscript. H.N. and J.P.H. contributed equally to this work.

Corresponding author

Correspondence to Christine J. Cardin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 593 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niyazi, H., Hall, J., O'Sullivan, K. et al. Crystal structures of Λ-[Ru(phen)2dppz]2+ with oligonucleotides containing TA/TA and AT/AT steps show two intercalation modes. Nature Chem 4, 621–628 (2012). https://doi.org/10.1038/nchem.1397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing