Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis

Abstract

Phosphorylation of p53 at Ser 46 was shown to regulate p53 apoptotic activity. Here we demonstrate that homeodomain-interacting protein kinase-2 (HIPK2), a member of a novel family of nuclear serine/threonine kinases, binds to and activates p53 by directly phosphorylating it at Ser 46. HIPK2 localizes with p53 and PML-3 into the nuclear bodies and is activated after irradiation with ultraviolet. Antisense inhibition of HIPK2 expression reduces the ultraviolet-induced apoptosis. Furthermore, HIPK2 and p53 cooperate in the activation of p53-dependent transcription and apoptotic pathways. These data define a new functional interaction between p53 and HIPK2 that results in the targeted subcellular localization of p53 and initiation of apoptosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIPK2 interacts with p53 both in vitro and in vivo.
Figure 2: HIPK2 co-localizes with p53 into PML NBs.
Figure 3: Wild-type HIPK2, but not the HIPK2(Δ865–1096) deletion mutant, is able to increase p53-mediated transcriptional activity.
Figure 4: HIPK2, but not the HIPK2-K221R kinase-dead mutant, phosphorylates p53 in vitro and in vivo.
Figure 5: HIPK2 binds and phosphorylates p53 after ultraviolet irradiation and contributes to ultraviolet-induced apoptosis.
Figure 6: HIPK2 promotes p53-mediated apoptosis.

Similar content being viewed by others

References

  1. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  2. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  3. Giaccia, A. J. & Kastan, M. B. The complexity of modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    Article  CAS  Google Scholar 

  4. Vousden, K. H. p53: death star. Cell 103, 691–694 (2000).

    Article  CAS  Google Scholar 

  5. Gottlieb, T. M. & Oren, M. p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287, 77–102 (1996).

    PubMed  Google Scholar 

  6. Bulavin, D. V. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18, 6845–6854 (1999).

    Article  CAS  Google Scholar 

  7. Oda, K. et al. P53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    Article  CAS  Google Scholar 

  8. Schmid, P., Lorenz, A., Hameister, H. & Montenarh, M. Expression of p53 during mouse embryogenesis. Development 113, 857–865 (1991).

    CAS  PubMed  Google Scholar 

  9. Kim, Y. H., Choi, C. Y., Lee, S.-J., Conti, M. A. & Kim, Y. Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J. Biol. Chem. 273, 25875–25879 (1998).

    Article  CAS  Google Scholar 

  10. Schneider, S., Buchart, M. & Hovens, C. M. An in vitro assay of β-galactosidase from yeast. Biotechniques 20, 960–962 (1996).

    Article  CAS  Google Scholar 

  11. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  Google Scholar 

  12. Kim, Y. H., Choi, C. Y. & Kim, Y. Covalent modification of the homeodomain-interacting protein kinase 2 (HIPK2) by the ubiquitin-like protein SUMO-1. Proc. Natl Acad. Sci. USA 96, 12350–12355 (1999).

    Article  CAS  Google Scholar 

  13. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  Google Scholar 

  14. Fereyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    Google Scholar 

  15. Guo, A. et al. The function of PML in p53-dependent apoptosis. Nature Cell Biol. 2, 730–736 (2000).

    Article  CAS  Google Scholar 

  16. Fogal, V. et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 19, 6185–6195 (2000).

    Article  CAS  Google Scholar 

  17. Muller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus EMBO J. 17, 61–70 (1998).

    Article  CAS  Google Scholar 

  18. Wu, X., Bayle, J. H., Olson, D. & Levine, A. J. The mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132 (1993).

    Article  CAS  Google Scholar 

  19. Barak, Y., Juven, T., Haffner. R. & Oren, M. mdm2 expression is induced by wild-type p53 activity. EMBO J. 12, 461–468 (1993).

    Article  CAS  Google Scholar 

  20. Sakaguchi, K. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem. 275, 9278–9283 (2000).

    Article  CAS  Google Scholar 

  21. Higashimoto, Y. et al. Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agent. J. Biol. Chem. 275, 23199–23203 (2000).

    Article  CAS  Google Scholar 

  22. Hofmann, T. G., Mincheva, A., Lichter, P., Droge, W. & Schmitz, M. L. Human Homeodomain-interacting protein kinase-2 (HIPK2) is a member of the DYRK family of proteine kinases and maps to chromosome 7q32-q34. Biochimie 82, 1123–1127 (2000).

    Article  CAS  Google Scholar 

  23. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).

    Article  CAS  Google Scholar 

  24. Polyak, K., Xia, Y., Zweir J. L., Winzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    Article  CAS  Google Scholar 

  25. Matsuzawa, S., Takayama, S., Froesch, B. A., Zapata, J. M. & Reed, J. C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 15, 2736–2747 (1998).

    Article  Google Scholar 

  26. Haupt, Y., Barak, Y. & Oren, M. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J. 15, 1596–1606 (1996).

    Article  CAS  Google Scholar 

  27. Fanciulli, M. et al. The interacting RNA polymerase II subunits, hRPB11 and hRBP3, are coordinately expressed in adult human tissues and down-regulated by doxorubicin. FEBS Lett. 384, 48–52 (1998).

    Article  Google Scholar 

  28. Fanciulli, M. et al. Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb. FASEB J. 14, 904–912 (2000).

    Article  CAS  Google Scholar 

  29. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2754–2752 (1987).

    Google Scholar 

  30. Graham, F. & Prevec, L. in Methods of Molecular Biology Vol. 7 (ed. Murray, E. J.) 109–128 (Humana Press, Clifton, NJ, 1991).

    Google Scholar 

  31. Bacchetti, S. & Graham, F. Inhibition of cell proliferation by an adenovirus vector expressing the human wild type p53 protein. Int. J. Oncol. 3, 781–788 (1993).

    CAS  PubMed  Google Scholar 

  32. Leonetti, C. et al. Antitumor effect of c-myc antisense phosphorothioate oligodeoxynucleotides on human melanoma cells in vitro and in mice. J. Natl Cancer Inst. 88, 419–429 (1996).

    Article  CAS  Google Scholar 

  33. Manni, I. et al. NF-Y mediates the transcriptional inhibition of the cyclin B1, cyclin B2, and cdc25c promoters upon induced G2 arrest. J. Biol. Chem. 276, 5570–5576 (2001).

    Article  CAS  Google Scholar 

  34. Ito, K., Takeuchi, Y., Ito, K. & Kato, S. Strain-dependent antibody response induced by DNA immunization. Immunol. Lett. 74, 245–250 (2000).

    Article  CAS  Google Scholar 

  35. Lombard, D. B. & Guarente, L. Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res. 60, 2331–2334 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Crescenzi and G. Blandino for helpful advice and stimulating discussions. G.D. and S.S. are particularly grateful to A. Sacchi for her constant availability, support and scientific inspiration. I.M. and M.G. are recipients of fellowships from Fondazione Italiana per la Ricerca sul Cancro. This work was supported by a New Unit Start-Up Grant to S.S. and by Investigator Grants to G.D.S. and G.P. from Associazione Italiana per la Ricerca sul Cancro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Soddu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Orazi, G., Cecchinelli, B., Bruno, T. et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4, 11–19 (2002). https://doi.org/10.1038/ncb714

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing