Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron tomography reveals unbranched networks of actin filaments in lamellipodia

Abstract

Eukaryotic cells can initiate movement using the forces exerted by polymerizing actin filaments to extend lamellipodial and filopodial protrusions. In the current model, actin filaments in lamellipodia are organized in a branched, dendritic network. We applied electron tomography to vitreously frozen 'live' cells, fixed cells and cytoskeletons, embedded in vitreous ice or in deep-negative stain. In lamellipodia from four cell types, including rapidly migrating fish keratocytes, we found that actin filaments are almost exclusively unbranched. The vast majority of apparent filament junctions proved to be overlapping filaments, rather than branched end-to-side junctions. Analysis of the tomograms revealed that actin filaments terminate at the membrane interface within a zone several hundred nanometres wide at the lamellipodium front, and yielded the first direct measurements of filament densities. Actin filament pairs were also identified as lamellipodium components and bundle precursors. These data provide a new structural basis for understanding actin-driven protrusion during cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-electron tomography of lamellipodia.
Figure 2: Correlated live-cell imaging and electron tomography of protruding goldfish fibroblast lamellipodium.
Figure 3: Actin filaments overlap and do not form a dendritic array in keratocyte lamellipodia.
Figure 4: The keratocyte lamellipodium tapers towards the tip with the filament ends distributed over a wide zone.
Figure 5: Schemes of actin filament organization.
Figure 6: Hypothetical scheme of actin network generation in lamellipodia.

Similar content being viewed by others

References

  1. Small, J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J. Cell Biol. 91, 695–705 (1981).

    Article  CAS  Google Scholar 

  2. Hoglund, A. S., Karlsson, R., Arro, E., Fredriksson, B. A. & Lindberg, U. Visualization of the peripheral weave of microfilaments in glia cells. J. Muscle Res. Cell Motil. 1, 127–146 (1980).

    Article  CAS  Google Scholar 

  3. Small, J. V., Rinnerthaler, G. & Hinssen, H. Organization of actin meshworks in cultured cells: the leading edge. Cold Spring Harb. Symp. Quant. Biol. 46, 599–611 (1982).

    Article  Google Scholar 

  4. Small, J. V., Isenberg, G. & Celis, J. E. Polarity of actin at the leading edge of cultured cells. Nature 272, 638–639 (1978).

    Article  CAS  Google Scholar 

  5. Small, J. V., Herzog, M. & Anderson, K. Actin filament organization in the fish keratocyte lamellipodium. J. Cell Biol. 129, 1275–1286 (1995).

    Article  CAS  Google Scholar 

  6. Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139, 397–415 (1997).

    Article  CAS  Google Scholar 

  7. Wang, Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101, 597–602 (1985).

    Article  CAS  Google Scholar 

  8. Okabe, S. & Hirokawa, N. Incorporation and turnover of biotin-labeled actin microinjected into fibroblastic cells: an immunoelectron microscopic study. J. Cell Biol. 109, 1581–1595 (1989).

    Article  CAS  Google Scholar 

  9. Symons, M. H. & Mitchison, T. J. Control of actin polymerization in live and permeabilized fibroblasts. J. Cell Biol. 114, 503–513 (1991).

    Article  CAS  Google Scholar 

  10. Lai, F. P. et al. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 7, 982–992 (2008).

    Article  Google Scholar 

  11. Pollard, T. D. Regulation of actin filament assembly by arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  Google Scholar 

  12. Le Clainche, C. & Carlier, M. F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev. 88, 489–513 (2008).

    Article  CAS  Google Scholar 

  13. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    Article  CAS  Google Scholar 

  14. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  15. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107–115 (1994).

    Article  CAS  Google Scholar 

  16. Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384 (1997).

    Article  CAS  Google Scholar 

  17. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  Google Scholar 

  18. Kunda, P., Craig, G., Dominguez, V. & Baum, B. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr. Biol. 13, 1867–1875 (2003).

    Article  CAS  Google Scholar 

  19. Steffen, A. et al. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J. 23, 749–759 (2004).

    Article  CAS  Google Scholar 

  20. Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088 (2003).

    Article  CAS  Google Scholar 

  21. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  Google Scholar 

  22. Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

    Article  CAS  Google Scholar 

  23. Stradal, T. E. & Scita, G. Protein complexes regulating Arp2/3-mediated actin assembly. Curr. Opin. Cell Biol. 18, 4–10 (2006).

    Article  CAS  Google Scholar 

  24. Nakagawa, H. et al. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J. Cell Sci. 116, 2577–2583 (2003).

    Article  CAS  Google Scholar 

  25. Amann, K. J. & Pollard, T. D. Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc. Natl Acad. Sci. USA 98, 15009–15013 (2001).

    Article  CAS  Google Scholar 

  26. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M. F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nat. Cell Biol. 2, 385–391 (2000).

    Article  CAS  Google Scholar 

  27. Volkmann, N. et al. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 293, 2456–2459 (2001).

    Article  CAS  Google Scholar 

  28. Rouiller, I. et al. The structural basis of actin filament branching by the Arp2/3 complex. J. Cell Biol. 180, 887–895 (2008).

    Article  CAS  Google Scholar 

  29. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  Google Scholar 

  30. Koestler, S. A., Auinger, S., Vinzenz, M., Rottner, K. & Small, J. V. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat. Cell Biol. 10, 306–313 (2008).

    Article  CAS  Google Scholar 

  31. Baumeister, W. Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12, 679–684 (2002).

    Article  CAS  Google Scholar 

  32. Steven, A. C. & Aebi, U. The next ice age: cryo-electron tomography of intact cells. Trends Cell Biol. 13, 107–110 (2003).

    Article  CAS  Google Scholar 

  33. Medalia, O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002).

    Article  CAS  Google Scholar 

  34. Nemethova, M., Auinger, S. & Small, J. V. Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J. Cell Biol. 180, 1233–1244 (2008).

    Article  CAS  Google Scholar 

  35. Auinger, S. & Small, J. V. Correlated light and electron microscopy of the cytoskeleton. Methods Cell Biol. 88, 257–272 (2008).

    Article  CAS  Google Scholar 

  36. Verkhovsky, A. B. et al. Orientational order of the lamellipodial actin network as demonstrated in living motile cells. Mol. Biol. Cell 14, 4667–4675 (2003).

    Article  CAS  Google Scholar 

  37. Steinmetz, M. O., Stoffler, D., Hoenger, A., Bremer, A. & Aebi, U. Actin: from cell biology to atomic detail. J. Struct. Biol. 119, 295–320 (1997).

    Article  CAS  Google Scholar 

  38. Flinn, H. M. & Ridley, A. J. Rho stimulates tyrosine phosphorylation of focal adhesion kinase, p130 and paxillin. J. Cell Sci. 109, 1133–1141 (1996).

    CAS  PubMed  Google Scholar 

  39. Koestler, S. A. et al. F- and G-actin concentrations in lamellipodia of moving cells. PLoS ONE 4, e4810 (2009).

    Article  Google Scholar 

  40. Vallotton, P. & Small, J. V. Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. J. Cell Sci. 122, 1955–1958 (2009).

    Article  CAS  Google Scholar 

  41. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  Google Scholar 

  42. Lebensohn, A. M. & Kirschner, M. Activation of the WAVE complex by coincident signals controls actin assembly. Cell 36, 512–524 (2009).

    CAS  Google Scholar 

  43. Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    Article  CAS  Google Scholar 

  44. Flanagan, L. A. et al. Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J. Cell Biol. 155, 511–517 (2001).

    Article  CAS  Google Scholar 

  45. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  Google Scholar 

  46. Langanger, G. et al. Ultrastructural localization of α-actinin and filamin in cultured cells with the immunogold staining (IGS) method. J. Cell Biol. 99, 1324–1334 (1984).

    Article  CAS  Google Scholar 

  47. Dickinson, R. B. Models for actin polymerization motors. J. Math. Biol. 58, 81–103 (2009).

    Article  Google Scholar 

  48. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    Article  CAS  Google Scholar 

  49. Krugmann, S. et al. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr. Biol. 11, 1645–1655 (2001).

    Article  CAS  Google Scholar 

  50. Breitsprecher, D. et al. Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 27, 2943–2954 (2008).

    Article  CAS  Google Scholar 

  51. Schirenbeck, A. et al. The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. Proc. Natl Acad. Sci. USA 103, 7694–7699 (2006).

    Article  CAS  Google Scholar 

  52. Chesarone, M. A. & Goode, B. L. Actin nucleation and elongation factors: mechanisms and interplay. Curr. Opin. Cell Biol. 21, 28–37 (2009).

    Article  CAS  Google Scholar 

  53. Yang, C. et al. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol. 5, e317 (2007).

    Article  Google Scholar 

  54. Block, J. et al. Filopodia formation induced by active mDia2/Drf3. J. Microsc. 231, 506–517 (2008).

    Article  CAS  Google Scholar 

  55. Nakagawa, H., Terasaki, A. G., Suzuki, H., Ohashi, K. & Miyamoto, S. Short-term retention of actin filament binding proteins on lamellipodial actin bundles. FEBS Lett. 580, 3223–3228 (2006).

    Article  CAS  Google Scholar 

  56. Vignjevic, D. et al. Role of fascin in filopodial protrusion. J. Cell Biol. 174, 863–875 (2006).

    Article  CAS  Google Scholar 

  57. Faix, J. & Rottner, K. The making of filopodia. Curr. Opin. Cell Biol. 18, 18–25 (2006).

    Article  CAS  Google Scholar 

  58. Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell. Biol. 9, 446–454 (2008).

    Article  CAS  Google Scholar 

  59. DeRosier, D. J. & Tilney, L. G. F-actin bundles are derivatives of microvilli: What does this tell us about how bundles might form? J. Cell Biol. 148, 1–6 (2000).

    Article  CAS  Google Scholar 

  60. Small, J. V. The actin cytoskeleton. Electron Microsc. Rev. 1, 155–174 (1988).

    Article  CAS  Google Scholar 

  61. Brieher, W. M., Coughlin, M. & Mitchison, T. J. Fascin-mediated propulsion of Listeria monocytogenes independent of frequent nucleation by the Arp2/3 complex. J. Cell Biol. 165, 233–242 (2004).

    Article  CAS  Google Scholar 

  62. Cameron, L. A., Svitkina, T. M., Vignjevic, D., Theriot, J. A. & Borisy, G. G. Dendritic organization of actin comet tails. Curr. Biol. 11, 130–135 (2001).

    Article  CAS  Google Scholar 

  63. Anderson, K. S. & Small, J. V. Preparation and fixation of fish keratocytes. Cell Biology: A laboratory Handbook, Vol. 2, 372–376 (Academic, 1998).

    Google Scholar 

  64. Anderson, K. I., Wang, Y. L. & Small, J. V. Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body. J. Cell Biol. 134, 1209–1218 (1996).

    Article  CAS  Google Scholar 

  65. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  66. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  67. Frangakis, A. S. & Hegerl, R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135, 239–250 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kulcsar for help with graphics, M. Brandstaetter for support in electron microscopy, T. Stradal and K. Rottner for the p16 ArpC5 construct, and R. Tsien for mCherry. J.V.S. was supported by the Austrian Science Research Council and the Vienna Science Research and Technology Fund (WWTF). G.P.R and J.V.S. acknowledge the support by the City of Vienna/Zentrum für Innovation und Technologie through the spot of excellence grant “Center of Molecular and Cellular Nanostructure”.

Author information

Authors and Affiliations

Authors

Contributions

E.U. and S.J. prepared experimental material and performed electron tomography, image processing and image analysis. M.N. prepared experimental material and performed correlated live-cell imaging and image analysis. E.U., S.J. and M.N. prepared the figures. G.P.R. set up the tomography facility, provided advice and assistance with tomography, cryofixation and image processing. J.V.S. conceived the project, contributed to image analysis and wrote the manuscript with feedback from co-authors.

Corresponding author

Correspondence to J. Victor Small.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1810 kb)

Supplementary Information

Supplementary Movie 1 (MOV 14667 kb)

Supplementary Information

Supplementary Movie 2 (MOV 8438 kb)

Supplementary Information

Supplementary Movie 3 (MOV 36412 kb)

Supplementary Information

Supplementary Movie 4a (MOV 5992 kb)

Supplementary Information

Supplementary Movie 4b (MOV 9449 kb)

Supplementary Information

Supplementary Movie 5 (MOV 27 kb)

Supplementary Information

Supplementary Movie 6 (MOV 12001 kb)

Supplementary Information

Supplementary Movie 7 (MOV 13934 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, E., Jacob, S., Nemethova, M. et al. Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat Cell Biol 12, 429–435 (2010). https://doi.org/10.1038/ncb2044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing