Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNAs 17-5p–20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation

Abstract

We investigated the role of microRNAs (miRNA) 17-5p, 20a and 106a in monocytic differentiation and maturation. In unilineage monocytic culture generated by haematopoietic progenitor cells these miRNAs are downregulated, whereas the transcription factor acute myeloid leukaemia-1 (AML1; also known as Runt-related transcription factor 1, Runx1) is upregulated at protein but not mRNA level. As miRNAs 17-5p, 20a and 106a bind the AML1 mRNA 3′UTR, their decline may unblock AML1 translation. Accordingly, transfection with miRNA 17-5p20a106a suppresses AML1 protein expression, leading to M-CSF receptor (M-CSFR) downregulation, enhanced blast proliferation and inhibition of monocytic differentiation and maturation. Treatment with anti-miRNA 17-5p, 20a and 106a causes opposite effects. Knockdown of AML1 or M-CSFR by short interfering RNA (siRNA) mimics the action of the miRNA 17-5p20a106a, confirming that these miRNAs target AML1, which promotes M-CSFR transcription. In addition, AML1 binds the miRNA 17-5p–92 and 106a–92 cluster promoters and transcriptionally inhibits the expression of miRNA 17-5p–20a–106a. These studies indicate that monocytopoiesis is controlled by a circuitry involving sequentially miRNA 17-5p–20a–106a, AML1 and M-CSFR, whereby miRNA 17-5p–20a–106a function as a master gene complex interlinked with AML1 in a mutual negative feedback loop.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miRNAs 17-5p, 18a, 20a and 106a are downregulated during monocytic differentiation and maturation.
Figure 2: AML1 and M-CSFR expression levels during monocytopoiesis.
Figure 3: miRNAs 17-5p, 20a and 106a directly bind AML1 3′UTR.
Figure 4: Overexpression of miRNA 17-5p, 20a and 106a (300 nM) in monocytic cultures affects cell proliferation and differentiation and maturation.
Figure 5: Inhibition of AML1 expression by siRNA treatment affects monocytopoiesis.
Figure 6: Transfection of HPCs with anti-miRNA oligonucleotides complementary to miRNAs 17-5p, 20a and 106a, individually supplemented or pooled (anti-mix), affects monocytic proliferation, differentiation and maturation.
Figure 7: AML1 binds the miRNA 17-5p–92 and 106a–92 cluster promoters and transcriptionally inhibits miRNA expression.
Figure 8: Schematic representation of a model for the role of AML1 and miRNAs 17-5p, 20a and 106a in monocytic differentiation.

Similar content being viewed by others

References

  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  3. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  Google Scholar 

  4. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    Article  CAS  Google Scholar 

  5. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  CAS  Google Scholar 

  6. Naguibneva, I. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biol. 8, 278–284 (2006).

    Article  CAS  Google Scholar 

  7. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet. 38, 228–233 (2006).

    Article  CAS  Google Scholar 

  8. Esquela-Kerscher, A. & Slack, F. J. Oncomirs - microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    Article  CAS  Google Scholar 

  9. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  Google Scholar 

  10. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell 123, 819–831 (2005).

    Article  CAS  Google Scholar 

  11. Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl Acad. Sci. USA 102, 18081–18086 (2005).

    Article  CAS  Google Scholar 

  12. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  Google Scholar 

  13. Tanzer, A. & Stadler, P. F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004).

    Article  CAS  Google Scholar 

  14. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  Google Scholar 

  15. Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).

    Article  CAS  Google Scholar 

  16. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).

    Article  CAS  Google Scholar 

  17. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  Google Scholar 

  18. Gordon, A. T. et al. A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 28, 220–226 (2000).

    Article  CAS  Google Scholar 

  19. Schmidt, H. et al. Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod. Pathol. 18, 638–644 (2005).

    Article  CAS  Google Scholar 

  20. Uchida, H., Zhang, J. & Nimer, S. D. AML1A and AML1B can transactivate the human IL-3 promoter. J. Immunol. 158, 2251–2258 (1997).

    CAS  PubMed  Google Scholar 

  21. Frank, R. et al. The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11, 2667–2674 (1995).

    CAS  PubMed  Google Scholar 

  22. Nuchprayoon, I. et al. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β/CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol. Cell Biol. 14, 5558–5568 (1994).

    Article  CAS  Google Scholar 

  23. Zhang, D. E. et al. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF α2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol. Cell Biol. 16, 1231–1240 (1996).

    Article  CAS  Google Scholar 

  24. Stanley, E. R. Action of the colony-stimulating factor, CSF-1. Ciba Found. Symp. 118, 29–41 (1986).

    CAS  PubMed  Google Scholar 

  25. Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G. & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  Google Scholar 

  26. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl Acad. Sci. USA 93, 3444–3449 (1996).

    Article  CAS  Google Scholar 

  27. Growney, J. D. et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106, 494–504 (2005).

    Article  CAS  Google Scholar 

  28. Ziegler, B. et al. Unilineage hematopoietic differentiation in bulk and single cell culture. Stem Cells 16, 51–73 (1998).

    Article  Google Scholar 

  29. Testa, U. et al. Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors. Blood 88, 3391–3406 (1996).

    CAS  PubMed  Google Scholar 

  30. De Maria, R. et al. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature 401, 489–493 (1999).

    Article  CAS  Google Scholar 

  31. Zeuner, A. et al. Increased death receptor resistance and FLIPshort expression in polycythemia vera erythroid precursor cells. Blood 107, 3495–3502 (2006).

    Article  CAS  Google Scholar 

  32. Liu, C. G. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA 101, 9740–9744 (2004).

    Article  CAS  Google Scholar 

  33. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  34. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005).

    Article  CAS  Google Scholar 

  35. John, B. et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004).

    Article  Google Scholar 

  36. Speck, N. A. & Gilliland, D. G. Core-binding factors in haematopoiesis and leukaemia. Nature Rev. Cancer 2, 502–513 (2002).

    Article  CAS  Google Scholar 

  37. Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550 (2004).

    Article  CAS  Google Scholar 

  38. Hutvagner, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence-specific inhibition of small RNA function. PLoS Biol 2, e98 (2004).

    Article  Google Scholar 

  39. Taniuchi, I. & Littman, D. R. Epigenetic gene silencing by Runx proteins. Oncogene 23, 4341–4345 (2004).

    Article  CAS  Google Scholar 

  40. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    Article  CAS  Google Scholar 

  41. Hiebert, S. W. et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol. Cell Biol. 16, 1349–1355 (1996).

    Article  CAS  Google Scholar 

  42. Mulloy, J. C. et al. The AML1–ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 99, 15–23 (2002).

    Article  CAS  Google Scholar 

  43. Rhoades, K. L. et al. Analysis of the role of AML1–ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 96, 2108–2115 (2000).

    CAS  PubMed  Google Scholar 

  44. Follows, G. A. et al. Epigenetic consequences of AML1–ETO action at the human c-FMS locus. EMBO J. 22, 2798–2809 (2003).

    Article  CAS  Google Scholar 

  45. Kuchenbauer, F., Feuring-Buske, M. & Buske, C. AML1–ETO needs a partner: new insights into the pathogenesis of t(8;21) leukemia. Cell Cycle 4, 1716–1718 (2005).

    Article  CAS  Google Scholar 

  46. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  Google Scholar 

  47. Pelosi, E. et al. Identification of the hemangioblast in postnatal life. Blood 100, 3203–3208 (2002).

    Article  CAS  Google Scholar 

  48. Grignani, F. et al. The acute promyelocytic leukemia-specific PML–RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74, 423–431 (1993).

    Article  CAS  Google Scholar 

  49. Valoczi, A. et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175 (2004).

    Article  Google Scholar 

  50. Passeri, D. et al. Btg2 enhances retinoic acid-induced differentiation by modulating histone H4 methylation and acetylation. Mol. Cell Biol. 26, 5023–5032 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by Italy-USA Oncology Program, Istituto Superiore di Sanità, Italy and NIH Grant 1R01HL63168 (CP). We thank A. Carfí, G. Marziali and M. E. Fiori for helpful discussions and for critically reading the manuscript. We are also grateful to A. M. Cerio and S. Giovinazzi for expert technical assistance, M. Biffoni and G. Mariani for FACS analysis, M. Blasi, V. Michetti and M. Fontana for editorial assistance and A. Zito for artwork.

Author information

Authors and Affiliations

Authors

Contributions

L.F. planned the research strategy, designed and performed experiments and wrote the paper. E.P., P.G., S.R., U.T. and F.L. performed experiments. C.M.C. provided microarray analysis. E.B. provided cord-blood samples. F.G. designed and interpreted ChIP experiments. C.P. planned the research strategy and wrote the paper.

Corresponding authors

Correspondence to Laura Fontana or Cesare Peschle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 and S5 (PDF 860 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, L., Pelosi, E., Greco, P. et al. MicroRNAs 17-5p–20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9, 775–787 (2007). https://doi.org/10.1038/ncb1613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing