Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nuclear actin and myosin I are required for RNA polymerase I transcription

Abstract

The presence of actin and nuclear myosin I (NMI) in the nucleus suggests a role for these motor proteins in nuclear functions. We have investigated the role of actin and nuclear myosin I (NMI) in the transcription of ribosomal RNA genes (rDNA). Both proteins are associated with rDNA and are required for RNA polymerase I (Pol I) transcription. Microinjection of antibodies against actin or NMI, as well as short interfering RNA-mediated depletion of NMI, decreased Pol I transcription in vivo, whereas overexpression of NMI augmented pre-rRNA synthesis. In vitro, recombinant NMI activated Pol I transcription, and antibodies to NMI or actin inhibited Pol I transcription both on naked DNA and pre-assembled chromatin templates. Whereas actin associated with Pol I, NMI bound to Pol I through the transcription-initiation factor TIF-IA. The association with Pol I requires phosphorylation of TIF-IA at Ser 649 by RSK kinase, indicating a role for NMI in the growth-dependent regulation of rRNA synthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin and NMI are required for rDNA transcription in vivo.
Figure 2: NMI and actin activate Pol I transcription.
Figure 3: Actin and NMI are associated with the Pol I transcription machinery.
Figure 4: The association of NMI with the Pol I transcription apparatus requires phosphorylation of TIF-IA at Ser 649.
Figure 5: Actin and NMI are associated with rDNA.

References

  1. Rando, O. J., Zhao, K. & Crabtree, G. R. Searching for a function for nuclear actin. Trends Cell Biol. 10, 92–97 (2000).

    Article  CAS  Google Scholar 

  2. Pederson, T. Half a century of “the nuclear matrix”. Mol. Biol. Cell 11, 799–805 (2000).

    Article  CAS  Google Scholar 

  3. Pederson, T. & Aebi, U. Actin in the nucleus: what form and what for? J. Struct. Biol. 140, 3–9 (2002).

    Article  CAS  Google Scholar 

  4. Olave, I. A., Reck-Peterson, S. L. & Crabtree, G. R. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71, 755–781 (2002).

    Article  CAS  Google Scholar 

  5. Bettinger, B., Gilbert, D. & Amberg, D. C. Actin up in the nucleus. Nature Rev. Mol. Cell Biol. 5, 410–415 (2004).

    Article  CAS  Google Scholar 

  6. Muratani, M. et al. Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nature Cell Biol. 4, 106–110 (2002).

    Article  CAS  Google Scholar 

  7. Nowak, G. et al. Evidence for the presence of myosin I in the nucleus. J. Biol. Chem. 272, 17176–17181 (1997).

    Article  CAS  Google Scholar 

  8. Pestic-Dragovich, L. et al. A myosin I isoform in the nucleus. Science 290, 337–341 (2000).

    Article  CAS  Google Scholar 

  9. Funaki, K., Katsumoto, T. & Iino, A. Immunocytochemical localization of actin in the nucleolus of rat oocytes. Biol. Cell. 84, 139–146 (1995).

    Article  CAS  Google Scholar 

  10. Soyer-Gobillard, M. O., Ausseil, J. & Geraud, M. L. Nuclear and cytoplasmic actin in dinoflagellates. Biol. Cell. 87, 17–35 (1996).

    Article  CAS  Google Scholar 

  11. Fomproix, N. & Percipalle, P. An actin-myosin complex on actively transcribing genes. Exp. Cell Res. 294, 140–148 (2004).

    Article  CAS  Google Scholar 

  12. Egly, J. M., Miyamoto, N. G., Moncollin, V. & Chambon, P. Is actin a transcription initiation factor for RNA polymerase B? EMBO J. 3, 2363–2371 (1984).

    Article  CAS  Google Scholar 

  13. Scheer, U., Hinssen, H., Franke, W. W. & Jockusch, B. M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39, 111–122 (1984).

    Article  CAS  Google Scholar 

  14. Hofmann, W. A. et al. Actin is part of pre-initiation complexes and necessary for transcription by RNA polymerase II. Nature Cell Biol. 6, 1094–1101 (2004).

    Article  CAS  Google Scholar 

  15. Percipalle, P. et al. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Natl Acad. Sci. USA 100, 6475–6480 (2003).

    Article  CAS  Google Scholar 

  16. Tower, J. & Sollner-Webb, B. Transcription of mouse rDNA is regulated by an activated subform of RNA polymerase I. Cell 50, 873–883 (1987).

    Article  CAS  Google Scholar 

  17. Schnapp, A., Pfleiderer, C., Rosenbauer, H. & Grummt, I. A growth-dependent transcription initiation factor (TIF-IA) interacting with RNA polymerase I regulates mouse ribosomal RNA synthesis. EMBO J. 9, 2857–2863 (1990).

    Article  CAS  Google Scholar 

  18. Miller, G. et al. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to RNA gene promoters. EMBO J. 20, 1373–1382 (2001).

    Article  CAS  Google Scholar 

  19. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  Google Scholar 

  20. Yuan, X., Zhao, J., Zentgraf, H., Hoffmann-Rohrer, U. & Grummt, I. Multiple interactions between RNA polymerase I, TIF-IA and TAFI subunits regulate preinitiation complex assembly at the ribosomal gene promoter. EMBO Rep. 3, 1082–1087 (2002).

    Article  CAS  Google Scholar 

  21. Bodem, J. et al. TIF–IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p. EMBO Rep. 1, 171–175 (2000).

    Article  CAS  Google Scholar 

  22. Perry, R. P. & Kelley, D. E. Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J. Cell Physiol. 76, 127–139 (1970).

    Article  CAS  Google Scholar 

  23. Zhao, J., Yuan, Y., Frödin, M. & Grummt, I. The activity of TIF-IA, a basal RNA polymerase I transcription factor, is regulated by MAP kinase-mediated signaling Mol. Cell 11, 405–413 (2003).

    Article  CAS  Google Scholar 

  24. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  Google Scholar 

  25. Smith, S. S., Kelly, K. H. & Jockusch, B. M. Actin co-purifies with RNA polymerase II. Biochem. Biophys. Res. Comm. 86, 161–166 (1979).

    Article  CAS  Google Scholar 

  26. Nakayasu, H. & Ueda, K. Ultrastructural localization of actin in nuclear matrices from mouse leukemia L5178Y cells. Cell. Struct. Funct. 10, 305–309 (1985).

    Article  CAS  Google Scholar 

  27. Schröder, H. C. et al. Cytochalasin B selectively releases ovalbumin mRNA precursors but not the mature ovalbumin mRNA from hen oviduct nuclear matrix. Eur. J. Biochem. 167, 239–245 (1987).

    Article  Google Scholar 

  28. Percipalle, P. et al. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res. 30, 1725–1734 (2002).

    Article  CAS  Google Scholar 

  29. Nguyen, E., Besombes, D. & Debey, P. Immunofluorescent localization of actin in relation to transcription sites in mouse pronuclei. Mol. Reprod. Dev. 50, 263–272 (1998).

    Article  CAS  Google Scholar 

  30. Percipalle, P. et al. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J. Cell Biol. 153, 229–236 (2001).

    Article  CAS  Google Scholar 

  31. Cavanaugh, A. H. et al. Rrn3 phosphorylation is a regulatory checkpoint for ribosome biogenesis. J. Biol. Chem. 277, 27423–27432 (2002).

    Article  CAS  Google Scholar 

  32. Brun, R. P., Ryan, K. & Sollner-Webb, B. Factor C*, the specific initiation component of the mouse RNA polymerase I holoenzyme, is inactivated early in the transcription process. Mol. Cell. Biol. 14, 5010–5020 (1994).

    Article  CAS  Google Scholar 

  33. Hirschler-Laszkiewicz, I. et al. Rrn3 becomes inactivated in the process of ribosomal DNA transcription. J. Biol. Chem. 278, 18953–18959 (2003).

    Article  CAS  Google Scholar 

  34. Seither, P. & Grummt, I. Molecular cloning of RPA2, the gene encoding the second largest subunit of mouse RNA polymerase I. Genomics 37, 135–139 (1996).

    Article  CAS  Google Scholar 

  35. Schnapp, A. & Grummt, I. Purification, assay, and properties of RNA polymerase I and class I-specific transcription factors in mouse. Methods Enzymol. 273, 233–248 (1996).

    Article  CAS  Google Scholar 

  36. Budde, A. & Grummt I. p53 represses ribosomal gene transcription. Oncogene 18, 1119–1124 (1999).

    Article  CAS  Google Scholar 

  37. Längst, G., Becker, P. B. & Grummt, I. TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J. 17, 3135–3145 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Lessard for the C4 monoclonal anti-actin antibody and R. Santoro for providing pre-assembled chromatin templates. P.H. was supported by the Grant Agency of the Czech Republic (Reg. No. 304/01/0661 and 2004/04/0108), by the Grant Agency of the Academy of Sciences of the Czech Republic (Reg. No. IAA5039202), by NSF/MŠMT ME 470 and by the Institutional Grant No. AV0Z5039906. V.P. was supported by the Grant Agency of the Czech Republic (Reg. No. 304/03/P118). P.de L. was supported in part by grants from the US Public Health Service (NIH GM 59648) and the US National Science Foundation (INT 9724168). I.G. was supported by the Deutsche Forschungsgemeinschaft, the EU-network “Epigenome” and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Grummt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philimonenko, V., Zhao, J., Iben, S. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6, 1165–1172 (2004). https://doi.org/10.1038/ncb1190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing