Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries

Abstract

The cytochrome P450 (CYP) gene family catalyzes drug metabolism and bioactivation and is therefore relevant to drug development. We determined potency values for 17,143 compounds against five recombinant CYP isozymes (1A2, 2C9, 2C19, 2D6 and 3A4) using an in vitro bioluminescent assay. The compounds included libraries of US Food and Drug Administration (FDA)-approved drugs and screening libraries. We observed cross-library isozyme inhibition (30–78%) with important differences between libraries. Whereas only 7% of the typical screening library was inactive against all five isozymes, 33% of FDA-approved drugs were inactive, reflecting the optimized pharmacological properties of the latter. Our results suggest that low CYP 2C isozyme activity is a common property of drugs, whereas other isozymes, such as CYP 2D6, show little discrimination between drugs and unoptimized compounds found in screening libraries. We also identified chemical substructures that differentiated between the five isozymes. The pharmacological compendium described here should further the understanding of CYP isozymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: qHTS of five cytochrome P450 isozymes (CYP 1A2, 2C9, 2C19, 2D6 and 3A4).
Figure 2: Distribution and differences in CYP activity between MLSMR versus FDA sets and comparison to published descriptions.
Figure 3: Clustering of CYP isozyme activity across the 17,000-compound collection.
Figure 4: Fragment analysis of CYP activity.
Figure 5: Fragment analysis of CYP activity for more complex heterocycles.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Evans, W.E. & Relling, M.V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    Article  CAS  Google Scholar 

  2. Ortiz de Montellano, P.R. (ed.) Cytochrome P450: structure, mechanism, and biochemistry. (Kluwer Acedemic/Plenum Publishers, New York, 2005).

  3. Williams, J.A. et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Disp. 32, 1201–1208 (2004).

    Article  CAS  Google Scholar 

  4. Di, L. & Kerns, E.H. Application of pharmaceutical profiling assays for optimization of drug-like properties. Curr. Opin. Drug Discov. Devel. 8, 495–504 (2005).

    CAS  PubMed  Google Scholar 

  5. Hollenberg, P.F. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab. Rev. 34, 17–35 (2002).

    Article  CAS  Google Scholar 

  6. Lewis, D.F., Eddershaw, P.J., Dickins, M., Tarbit, M.H. & Goldfarb, P.S. Structural determinants of cytochrome P450 substrate specificity, binding affinity and catalytic rate. Chem. Biol. Interact. 115, 175–199 (1998).

    Article  CAS  Google Scholar 

  7. Porter, T.D. & Coon, M.J. Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J. Biol. Chem. 266, 13469–13472 (1991).

    CAS  PubMed  Google Scholar 

  8. Sigel, A. et al. The Ubiquitous Roles of Cytochrome P450 Proteins: Metal Ions in Life Sciences vol. 3. (John Wiley & Sons, Ltd., 2007).

  9. Rendic, S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab. Rev. 34, 83–448 (2002).

    Article  CAS  Google Scholar 

  10. Inglese, J. et al. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. USA 103, 11473–11478 (2006).

    Article  CAS  Google Scholar 

  11. Zheng, W. et al. Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. Proc. Natl. Acad. Sci. USA 104, 13192–13197 (2007).

    Article  CAS  Google Scholar 

  12. Auld, D.S. et al. A basis for reduced chemical library inhibition of firefly luciferase obtained from directed evolution. J. Med. Chem. 52, 1450–1458 (2009).

    Article  CAS  Google Scholar 

  13. Davis, R.E. et al. A cell-based assay for IκBα stabilization using a two-color dual luciferase-based sensor. Assay Drug Dev. Technol. 5, 85–104 (2007).

    Article  CAS  Google Scholar 

  14. Xia, M. et al. Compound cytotoxicity profiling using quantitative high-throughput screening. Environ. Health Perspect. 116, 284–291 (2008).

    Article  CAS  Google Scholar 

  15. Cali, J.J. et al. Luminogenic cytochrome P450 assays. Expert Opin. Drug Metab. Toxicol. 2, 629–645 (2006).

    Article  CAS  Google Scholar 

  16. Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).

    Article  CAS  Google Scholar 

  17. Chauret, N. et al. Description of a 96-well plate assay to measure cytochrome P4503A inhibition in human liver microsomes using a selective fluorescent probe. Anal. Biochem. 276, 215–226 (1999).

    Article  CAS  Google Scholar 

  18. Kenworthy, K.E., Bloomer, J.C., Clarke, S.E. & Houston, J.B. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br. J. Clin. Pharmacol. 48, 716–727 (1999).

    Article  CAS  Google Scholar 

  19. Kohonen, T. Self-organizing neural projections. Neural Netw. 19, 723–733 (2006).

    Article  Google Scholar 

  20. Kohonen, T. & Oja, E. Computing with neural networks. Science 235, 1227a (1987).

    Article  CAS  Google Scholar 

  21. Lewis, D.F.V. A Guide to Cytochrome P450 Structure and Function (Taylor & Francis, London, 2001).

  22. Foti, R.S. & Wahlstrom, J.L. CYP2C19 inhibition: the impact of substrate probe selection on in vitro inhibition profiles. Drug Metab. Dispos. 36, 523–528 (2008).

    Article  CAS  Google Scholar 

  23. Kumar, V. et al. CYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab. Dispos. 34, 1966–1975 (2006).

    Article  CAS  Google Scholar 

  24. Nath, A. & Atkins, W.M. Principal component analysis of CYP2C9 and CYP3A4 probe substrate/inhibitor panels. Drug Metab. Dispos. 36, 2151–2155 (2008).

    Article  CAS  Google Scholar 

  25. Shimada, T. et al. Cytochrome P450-dependent drug oxidation activities in liver microsomes of various animal species including rats, guinea pigs, dogs, monkeys, and humans. Arch. Toxicol. 71, 401–408 (1997).

    Article  CAS  Google Scholar 

  26. Shimada, T., Yamazaki, H., Mimura, M., Inui, Y. & Guengerich, F.P. Inter-individual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414–423 (1994).

    CAS  PubMed  Google Scholar 

  27. Wienkers, L.C. & Heath, T.G. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. 4, 825–833 (2005).

    Article  CAS  Google Scholar 

  28. Lewis, D.F. & Ito, Y. Human cytochromes P450 in the metabolism of drugs: new molecular models of enzyme-substrate interactions. Expert Opin. Drug Metab. Toxicol. 4, 1181–1186 (2008).

    Article  CAS  Google Scholar 

  29. de Graaf, C., Pospisil, P., Pos, W., Folkers, G. & Vermeulen, N.P. Binding mode prediction of cytochrome p450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking. J. Med. Chem. 48, 2308–2318 (2005).

    Article  CAS  Google Scholar 

  30. de Graaf, C., Vermeulen, N.P. & Feenstra, K.A. Cytochrome p450 in silico: an integrative modeling approach. J. Med. Chem. 48, 2725–2755 (2005).

    Article  CAS  Google Scholar 

  31. Ekins, S., de Groot, M.J. & Jones, J.P. Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites. Drug Metab. Dispos. 29, 936–944 (2001).

    CAS  PubMed  Google Scholar 

  32. Hansch, C., Leo, A., Mekapati, S.B. & Kurup, A. QSAR and ADME. Bioorg. Med. Chem. 12, 3391–3400 (2004).

    Article  CAS  Google Scholar 

  33. Hansch, C., Mekapati, S.B., Kurup, A. & Verma, R.P. QSAR of cytochrome P450. Drug Metab. Rev. 36, 105–156 (2004).

    Article  CAS  Google Scholar 

  34. Fox, T. & Kriegl, J.M. Linear quantitative structure-activity relationships for the interaction of small molecules with human cytochrome P450 isoenzymes. Annual Reports in Computational Chemistry vol. 3 (eds. Spellmeyer, D. and Wheeler, R.) 64–84, (Elsevier, New York, 2007).

  35. Yasgar, A. et al. Compound management for quantitative high-throughput screening. J. Assoc. Lab. Autom. 13, 79–89 (2008).

    Article  CAS  Google Scholar 

  36. Shukla, S.J. et al. Identification of pregnane X receptor ligands using time-resolved fluorescence resonance energy transfer and quantitative high-throughput screening. Assay Drug Dev. Technol. 7, 143–169 (2009).

    Article  CAS  Google Scholar 

  37. Feng, B.Y. et al. A high-throughput screen for aggregation-based inhibition in a large compound library. J. Med. Chem. 50, 2385–2390 (2007).

    Article  CAS  Google Scholar 

  38. Goode, D.R., Totten, R.K., Heeres, J.T. & Hergenrother, P.J. Identification of promiscuous small molecule activators in high-throughput enzyme activation screens. J. Med. Chem. 51, 2346–2349 (2008).

    Article  CAS  Google Scholar 

  39. Shoichet, B.K. Interpreting steep dose-response curves in early inhibitor discovery. J. Med. Chem. 49, 7274–7277 (2006).

    Article  CAS  Google Scholar 

  40. Eagling, V.A., Tjia, J.F. & Back, D.J. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br. J. Clin. Pharmacol. 45, 107–114 (1998).

    Article  CAS  Google Scholar 

  41. von Moltke, L.L. et al. Phenacetin O-deethylation by human liver microsomes in vitro: inhibition by chemical probes, SSRI antidepressants, nefazodone and venlafaxine. Psychopharmacology (Berl.) 128, 398–407 (1996).

    Article  CAS  Google Scholar 

  42. Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    Article  CAS  Google Scholar 

  43. Huang, R. et al. Characterization of diversity in toxicity mechanism using in vitro cytotoxicity assays in quantitative high throughput screening. Chem. Res. Toxicol. 21, 659–667 (2008).

    Article  CAS  Google Scholar 

  44. Eastwood, B.J. et al. The minimum significant ratio: a statistical parameter to characterize the reproducibility of potency estimates from concentration-response assays and estimation by replicate-experiment studies. J. Biomol. Screen. 11, 253–261 (2006).

    Article  Google Scholar 

  45. Weininger, D. Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

    Article  CAS  Google Scholar 

  46. Kohonen, T. The self-organizing map. Neurocomputing 21, 1–6 (1998).

    Article  Google Scholar 

  47. Arimoto, R., Prasad, M.A. & Gifford, E.M. Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors. J. Biomol. Screen. 10, 197–205 (2005).

    Article  CAS  Google Scholar 

  48. Cohen, L.H., Remley, M.J., Raunig, D. & Vaz, A.D. In vitro drug interactions of cytochrome p450: an evaluation of fluorogenic to conventional substrates. Drug Metab. Dispos. 31, 1005–1015 (2003).

    Article  CAS  Google Scholar 

  49. Schulz, M. & Schmoldt, A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 58, 447–474 (2003).

    CAS  PubMed  Google Scholar 

  50. Zlokarnik, G., Grootenhuis, P.D. & Watson, J.B. High throughput P450 inhibition screens in early drug discovery. Drug Discov. Today 10, 1443–1450 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Molecular Libraries Initiative of the National Institutes of Health Roadmap for Medical Research and the Intramural Research Program of the National Human Genome Research Institute. Work in Trinity College Dublin was supported by Enterprise Ireland, the Chemical Computing Group, OpenEye Scientific and Accelrys. We thank S. Jefferies and G. Carta for helpful discussions, S. Michael and C. Klumpp for help with robotic automation of the assays and P. Shinn for preparation of compound dilutions and library plates.

Author information

Authors and Affiliations

Authors

Contributions

H.V. collected experimental data; H.V., N.S., R.H., T.J., D.F., N.A., M.S., D.G.L. and D.S.A. performed analysis; H.V., N.S., T.J., D.F., R.H., D.G.L., J.I., C.P.A. and D.S.A wrote the paper.

Corresponding author

Correspondence to Douglas S Auld.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–8 and Supplementary Table 2 (PDF 524 kb)

Supplementary Table 1

CYP activity of substructures (XLS 870 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veith, H., Southall, N., Huang, R. et al. Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nat Biotechnol 27, 1050–1055 (2009). https://doi.org/10.1038/nbt.1581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing