Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo reprogramming of adult pancreatic exocrine cells to β-cells

Abstract

One goal of regenerative medicine is to instructively convert adult cells into other cell types for tissue repair and regeneration. Although isolated examples of adult cell reprogramming are known, there is no general understanding of how to turn one cell type into another in a controlled manner. Here, using a strategy of re-expressing key developmental regulators in vivo, we identify a specific combination of three transcription factors (Ngn3 (also known as Neurog3) Pdx1 and Mafa) that reprograms differentiated pancreatic exocrine cells in adult mice into cells that closely resemble β-cells. The induced β-cells are indistinguishable from endogenous islet β-cells in size, shape and ultrastructure. They express genes essential for β-cell function and can ameliorate hyperglycaemia by remodelling local vasculature and secreting insulin. This study provides an example of cellular reprogramming using defined factors in an adult organ and suggests a general paradigm for directing cell reprogramming without reversion to a pluripotent stem cell state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A combination of three transcription factors induces insulin+ cells in adult mouse pancreas in vivo.
Figure 2: Induced new β-cells originate from differentiated exocrine cells.
Figure 3: Endogenous and induced β-cells are indistinguishable in morphology and ultrastructure.
Figure 4: Molecular marker characterization of induced β-cells.
Figure 5: Induced new β-cells remodel vasculature and ameliorate hyperglycaemia.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The microarray data were deposited in the Gene Expression Omnibus (GEO) under accession number GSE 12025.

References

  1. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000)

    Article  CAS  Google Scholar 

  2. Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature 441, 1061–1067 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008)

    Article  CAS  Google Scholar 

  4. Slack, J. M. Metaplasia and transdifferentiation: from pure biology to the clinic. Nature Rev. Mol. Cell Biol. 8, 369–378 (2007)

    Article  CAS  Google Scholar 

  5. Brockes, J. P. & Kumar, A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Rev. Mol. Cell Biol. 3, 566–574 (2002)

    Article  CAS  Google Scholar 

  6. Hadorn, E. Transdetermination in cells. Sci. Am. 219, 110–114 (1968)

    Article  ADS  CAS  Google Scholar 

  7. Gurdon, J. B. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu. Rev. Cell Dev. Biol. 22, 1–22 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  Google Scholar 

  9. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  Google Scholar 

  10. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnol. 25, 1177–1181 (2007)

    Article  CAS  Google Scholar 

  12. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Choi, J. et al. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc. Natl Acad. Sci. USA 87, 7988–7992 (1990)

    Article  ADS  CAS  Google Scholar 

  15. Shen, C. N., Slack, J. M. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol. 2, 879–887 (2000)

    Article  CAS  Google Scholar 

  16. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004)

    Article  CAS  Google Scholar 

  17. Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Whitehead, G. G., Makino, S., Lien, C. L. & Keating, M. T. fgf20 is essential for initiating zebrafish fin regeneration. Science 310, 1957–1960 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Tanaka, E. M. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr. Opin. Genet. Dev. 13, 497–501 (2003)

    Article  CAS  Google Scholar 

  20. Zhou, Q. et al. A multipotent progenitor domain guides pancreatic organogenesis. Dev. Cell 13, 103–114 (2007)

    Article  CAS  Google Scholar 

  21. Murtaugh, L. C. & Melton, D. A. Genes, signals, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol. 19, 71–89 (2003)

    Article  CAS  Google Scholar 

  22. Jensen, J. Gene regulatory factors in pancreatic development. Dev. Dyn. 229, 176–200 (2004)

    Article  CAS  Google Scholar 

  23. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002)

    CAS  PubMed  Google Scholar 

  24. Baeyens, L. et al. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57 (2005)

    Article  CAS  Google Scholar 

  25. Minami, K. et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc. Natl Acad. Sci. USA 102, 15116–15121 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Wang, A. Y., Peng, P. D., Ehrhardt, A., Storm, T. A. & Kay, M. A. Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo . Hum. Gene Ther. 15, 405–413 (2004)

    Article  CAS  Google Scholar 

  27. Wang, A. Y., Ehrhardt, A., Xu, H. & Kay, M. A. Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol. Ther. 15, 255–263 (2007)

    Article  CAS  Google Scholar 

  28. Lammert, E. et al. Role of VEGF-A in vascularization of pancreatic islets. Curr. Biol. 13, 1070–1074 (2003)

    Article  CAS  Google Scholar 

  29. Konstantinova, I. et al. EphA–Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell 129, 359–370 (2007)

    Article  CAS  Google Scholar 

  30. Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nature Med. 6, 568–572 (2000)

    Article  CAS  Google Scholar 

  31. Kaneto, H. et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54, 1009–1022 (2005)

    Article  CAS  Google Scholar 

  32. Miyatsuka, T. et al. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem. Biophys. Res. Commun. 310, 1017–1025 (2003)

    Article  CAS  Google Scholar 

  33. Minami, K. & Seino, S. Pancreatic acinar-to-beta cell transdifferentiation in vitro . Front. Biosci. 13, 5824–5837 (2008)

    Article  CAS  Google Scholar 

  34. Okuno, M. et al. Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E158–E165 (2007)

    Article  CAS  Google Scholar 

  35. Sapir, T. et al. Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc. Natl Acad. Sci. USA 102, 7964–7969 (2005)

    Article  ADS  CAS  Google Scholar 

  36. Heremans, Y. et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol. 159, 303–312 (2002)

    Article  CAS  Google Scholar 

  37. Gasa, R. et al. Proendocrine genes coordinate the pancreatic islet differentiation program in vitro . Proc. Natl Acad. Sci. USA 101, 13245–13250 (2004)

    Article  ADS  CAS  Google Scholar 

  38. Morton, R. A., Geras-Raaka, E., Wilson, L. M., Raaka, B. M. & Gershengorn, M. C. Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol. Cell. Endocrinol. 270, 87–93 (2007)

    Article  CAS  Google Scholar 

  39. Gershengorn, M. C. et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306, 2261–2264 (2004)

    Article  ADS  CAS  Google Scholar 

  40. De Robertis, E. M. & Gurdon, J. B. Gene activation in somatic nuclei after injection into amphibian oocytes. Proc. Natl Acad. Sci. USA 74, 2470–2474 (1977)

    Article  ADS  CAS  Google Scholar 

  41. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Ericsson for expert assistance on electron microscopy, R. Hellmiss-Peralta for advice on graphics, and B. Tilton and P. Rogers for FACS. We thank R. Martinez and G. Kenty for technical assistance; H. Edlund for the gift of Ptf1a antiserum; A. Kweudjeu for microarray analysis; members of the Melton laboratory for advice and feedback; and J. Sneddon, J. Annes and W. Anderson for critical reading of the manuscript. Q.Z. was supported by a Damon-Runyon Cancer Research Foundation Postdoctoral Fellowship and a Pathway to Independence (PI) Award from the National Institute of Health. D.A.M. is an HHMI investigator and this work was supported in part by the Harvard Stem Cell Institute and the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Melton.

Supplementary information

Supplementary Information

The file contains Supplementary Table 1, Supplementary Figures 1-9 with legends, and Supplementary Methods. (PDF 2539 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Brown, J., Kanarek, A. et al. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008). https://doi.org/10.1038/nature07314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07314

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing