Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coevolution with viruses drives the evolution of bacterial mutation rates

Abstract

Bacteria with greatly elevated mutation rates (mutators) are frequently found in natural1,2,3 and laboratory4,5 populations, and are often associated with clinical infections6,7. Although mutators may increase adaptability to novel environmental conditions, they are also prone to the accumulation of deleterious mutations. The long-term maintenance of high bacterial mutation rates is therefore likely to be driven by rapidly changing selection pressures8,9,10,11,12,13,14, in addition to the possible slow transition rate by point mutation from mutators to non-mutators15. One of the most likely causes of rapidly changing selection pressures is antagonistic coevolution with parasites16,17. Here we show whether coevolution with viral parasites could drive the evolution of bacterial mutation rates in laboratory populations of the bacterium Pseudomonas fluorescens18. After fewer than 200 bacterial generations, 25% of the populations coevolving with phages had evolved 10- to 100-fold increases in mutation rates owing to mutations in mismatch-repair genes; no populations evolving in the absence of phages showed any significant change in mutation rate. Furthermore, mutator populations had a higher probability of driving their phage populations extinct, strongly suggesting that mutators have an advantage against phages in the coevolutionary arms race. Given their ubiquity, bacteriophages may play an important role in the evolution of bacterial mutation rates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulation results (see Supplementary Information ).
Figure 2: Relative mutation rates.
Figure 3: The frequency of coevolving populations of bacteria evolving elevated mutation rates and driving phages extinct, through time.
Figure 4: Competition experiments between wild-type and isogenic mutator.

Similar content being viewed by others

References

  1. LeClerc, J. E., Li, B. G., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli . Science 277, 1833–1834 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. Trong, H. N. G., Prunier, A. L. & Leclercq, R. Hypermutable and fluoroquinolone-resistant clinical isolates of Staphylococcus aureus . Antimicrob. Agents Chemother. 49, 2098–2101 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli . Nature 387, 703–705 (1997)

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1253 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Denamur, E. et al. High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J. Bacteriol. 184, 605–609 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leigh, E. G. Natural selection and mutability. Am. Nat. 104, 301–305 (1970)

    Article  Google Scholar 

  9. Ishii, K., Matsuda, H., Iwasa, Y. & Sasaki, A. Evolutionarily stable mutation-rate in a periodically changing environment. Genetics 121, 163–174 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Tenaillon, O., Toupance, B., Le Nagard, H., Taddei, F. & Godelle, B. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 152, 485–493 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanaka, M. M., Bergstrom, C. T. & Levin, B. R. The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics 164, 843–854 (2003)

    PubMed  PubMed Central  Google Scholar 

  13. Palmer, M. E. & Lipsitch, M. The influence of hitchhiking and deleterious mutation upon asexual mutation rates. Genetics 173, 461–472 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andre, J. B. & Godelle, B. The evolution of mutation rate in finite asexual populations. Genetics 172, 611–626 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denamur, E. et al. Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103, 711–721 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  17. West, S. A., Lively, C. M. & Read, A. F. A pluralist approach to sex and recombination. J. Evol. Biol. 12, 1003–1012 (1999)

    Article  Google Scholar 

  18. Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. R. Soc. Lond. B 269, 931–936 (2002)

    Article  Google Scholar 

  19. Mizoguchi, K. et al. Coevolution of bacteriophage PP01 and Escherichia coli O157: H7 in continuous culture. Appl. Environ. Microbiol. 69, 170–176 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morgan, A. D., Gandon, S. & Buckling, A. The effect of migration on local adaptation in a coevolving host–parasite system. Nature 437, 253–256 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Agrawal, A. & Lively, C. M. Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evol. Ecol. Res. 4, 79–90 (2002)

    Google Scholar 

  22. Rainey, P. B. & Bailey, M. J. Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol. Microbiol. 19, 521–533 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Morgan, A. D. & Buckling, A. Relative number of generations of hosts and parasites does not influence parasite local adaptation in coevolving populations of bacteria and phages. J. Evol. Biol. 19, 1956–1963 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Luria, S. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bjedov, I. et al. Stress-induced mutagenesis in bacteria. Science 300, 1404–1409 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Oliver, A., Levin, B. R., Juan, C., Baquero, F. & Blazquez, J. Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: implications for susceptibility testing and treatment of chronic infections. Antimicrob. Agents Chemother. 48, 4226–4233 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oliver, A., Baquero, F. & Blazquez, J. The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol. Microbiol. 43, 1641–1650 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. de Visser, J., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999)

    Article  CAS  ADS  Google Scholar 

  29. Chao, L. & Cox, E. C. Competition between high and low mutating strains of Escherichia coli . Evolution Int. J. Org. Evolution 37, 125–134 (1983)

    Article  Google Scholar 

  30. Rosche, W. A. & Foster, P. L. Determining mutation rates in bacterial populations. Methods 20, 4–17 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Spiers for providing sequence data. This work was funded by NERC UK (A.B. and C.P.); the Royal Society (A.B.); EMBO and Hungarian Research Grant (C.P.); Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III, Spanish Network for the Research in Infectious Diseases (A.O. and M.D.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Csaba Pal or Angus Buckling.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, Supplementary Tables 1-4 and Supplementary Figures 1-3 with Legends. (PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, C., Maciá, M., Oliver, A. et al. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007). https://doi.org/10.1038/nature06350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06350

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing