Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New signals from the invasive front

Abstract

Approximately 90% of all cancer deaths arise from the metastatic spread of primary tumours. Of all the processes involved in carcinogenesis, local invasion and the formation of metastases are clinically the most relevant, but they are the least well understood at the molecular level. Revealing their mechanisms is one of the main challenges for exploratory and applied cancer research. Recent experimental progress has identified a number of molecular pathways and cellular mechanisms that underlie the multistage process of metastasis formation: these include tumour invasion, tumour-cell dissemination through the bloodstream or the lymphatic system, colonization of distant organs and, finally, fatal outgrowth of metastases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The transition from epithelial tumour to invasive cancer.
Figure 2: Potential signalling pathways downstream of the loss of E-cadherin function.
Figure 3: The pleiotropic functions of N-cadherin.

Similar content being viewed by others

References

  1. Grunert, S., Jechlinger, M. & Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nature Rev. Mol. Cell Biol. 4, 657–665 (2003).

    Article  Google Scholar 

  2. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  3. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  5. Trusolino, L. & Comoglio, P. M. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nature Rev. Cancer 2, 289–300 (2002).

    Article  CAS  Google Scholar 

  6. Corso, S., Comoglio, P. M. & Giordano, S. Cancer therapy: can the challenge be MET? Trends Mol. Med. 11, 284–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nature Rev. Mol. Cell Biol. 4, 915–925 (2003).

    Article  CAS  Google Scholar 

  8. Boccaccio, C. et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 434, 396–400 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell 107, 643–654 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Conrotto, P., Corso, S., Gamberini, S., Comoglio, P. M. & Giordano, S. Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene 23, 5131–5137 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Giordano, S. et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biol. 4, 720–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Stella, M. C., Trusolino, L., Pennacchietti, S. & Comoglio, P. M. Negative feedback regulation of Met-dependent invasive growth by Notch. Mol. Cell Biol. 25, 3982–3996 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michieli, P. et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6, 61–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Y. A. et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Douma, S. et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034–1039 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Lopez, T. & Hanahan, D. Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 1, 339–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Mitsiades, C. S. et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5, 221–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Echeverria, C. et al. In vivo antitumor activity of NVP-AEW541 — A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5, 231–239 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Marone, R. et al. Memo mediates ErbB2-driven cell motility. Nature Cell Biol. 6, 515–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Karhadkar, S. S. et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    Article  PubMed  Google Scholar 

  22. Matteucci, E., Locati, M. & Desiderio, M. A. Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Exp. Cell Res. 310, 176–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Phillips, R. J. et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1α. J. Biol. Chem. 280, 22473–22481 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Rev. Cancer 4, 118–132 (2004).

    Article  CAS  Google Scholar 

  25. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. De Craene, B., van Roy, F. & Berx, G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal. 17, 535–547 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kang, Y. & Massague, J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Peinado, H., Ballestar, E., Esteller, M. & Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24, 306–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strathdee, G. Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin. Cancer Biol. 12, 373–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Yook, J. I., Li, X. Y., Ota, I., Fearon, E. R. & Weiss, S. J. Wnt-dependent regulation of the E-cadherin repressor snail. J. Biol. Chem. 280, 11740–11748 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lu, Z., Ghosh, S., Wang, Z. & Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4, 499–515 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, B. P. et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biol. 6, 931–940 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Bachelder, R. E., Yoon, S. O., Franci, C., de Herreros, A. G. & Mercurio, A. M. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J. Cell Biol. 168, 29–33 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peinado, H. et al. A molecular role for lysyl oxidase-like 2 enzyme in Snail regulation and tumor progression. EMBO J. 24, 3446–3458 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Gavert, N. et al. L1, a novel target of β-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 168, 633–642 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conacci-Sorrell, M. E. et al. Nr-CAM is a target gene of the β-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev. 16, 2058–2072 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perl, A. K. et al. Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic β tumor cells. Nature Med. 5, 286–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Cavallaro, U., Niedermeyer, J., Fuxa, M. & Christofori, G. N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nature Cell Biol. 3, 650–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Hood, J. D. & Cheresh, D. A. Role of integrins in cell invasion and migration. Nature Rev. Cancer 2, 91–100 (2002).

    Article  Google Scholar 

  41. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nature Rev. Mol. Cell Biol. 5, 816–826 (2004).

    Article  CAS  Google Scholar 

  43. Bao, S. et al. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5, 329–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayward, S. W. et al. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res. 61, 8135–8142 (2001).

    CAS  PubMed  Google Scholar 

  46. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004).

    Article  CAS  Google Scholar 

  50. Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nature Rev. Cancer 4, 11–22 (2004).

    Article  CAS  Google Scholar 

  52. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aharinejad, S. et al. Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res. 62, 5317–5324 (2002).

    CAS  PubMed  Google Scholar 

  55. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boire, A. et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer 3, 401–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Achen, M. G., McColl, B. K. & Stacker, S. A. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7, 121–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Saharinen, P., Tammela, T., Karkkainen, M. J. & Alitalo, K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 25, 387–395 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Zeelenberg, I. S., Ruuls- Van Stalle, L. & Roos, E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res. 63, 3833–3839 (2003).

    CAS  PubMed  Google Scholar 

  64. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lynch, C. C. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7, 485–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Brown, D. M. & Ruoslahti, E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 5, 365–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  70. Suyama, K., Shapiro, I., Guttman, M. & Hazan, R. B. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2, 301–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Marambaud, P. et al. A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114, 635–645 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Huber, M. A. et al. NF-κB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114, 569–581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 16, 3074–3086 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van der Voort, R. et al. Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J. Biol. Chem. 274, 6499–6506 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to all colleagues whose important work could not be cited due to space limitations. I am grateful to F. Lehembre for providing parts of Fig. 1. Experimental work in the author's laboratory is supported by NCCR Oncology, Swiss National Science Foundation, EU-FP6 framework programme LYMPHANGIOGENOMICS LSHG-CT-2004-50357, EU-FP6 framework programme BRECOSM LSHC-CT-2004-503224, Swiss Bridge Award, Krebsliga Beider Basel, and Roche Research Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christofori, G. New signals from the invasive front. Nature 441, 444–450 (2006). https://doi.org/10.1038/nature04872

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04872

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing