Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cells

Abstract

Bcl-2 proteins are over-expressed in many tumors and are critically important for cell survival. Their anti-apoptotic activities are determined by intracellular localization and post-translational modifications (such as phosphorylation). Here, we showed that WAVE1, a member of the Wiskott–Aldrich syndrome protein family, was over-expressed in blood cancer cell lines, and functioned as a negative regulator of apoptosis. Further enhanced expression of WAVE1 by gene transfection rendered leukemia cells more resistant to anti-cancer drug-induced apoptosis; whereas suppression of WAVE1 expression by RNA interference restored leukemia cells' sensitivity to anti-drug-induced apoptosis. WAVE1 was found to be associated with mitochondrial Bcl-2, and its depletion led to mitochondrial release of Bcl-2, and phosphorylation of ASK1/JNK and Bcl-2. Furthermore, depletion of WAVE1 expression increased anti-cancer drug-induced production of reactive oxygen species in leukemia cells. Taken together, these results suggest WAVE1 as a novel regulator of apoptosis, and potential drug target for therapeutic intervention of leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Igney FH, Krammer PH . Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002; 2: 277–288.

    Article  CAS  Google Scholar 

  2. Rong Y, Distelhorst CW . Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 2008; 70: 73–91.

    Article  CAS  Google Scholar 

  3. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ . Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  CAS  Google Scholar 

  4. Rudner J, Lepple-Wienhues A, Budach W, Berschauer J, Friedrich B, Wesselborg S et al. Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J Cell Sci 2001; 114: 4161–4172.

    CAS  Google Scholar 

  5. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    Article  CAS  Google Scholar 

  6. Wang NS, Unkila MT, Reineks EZ, Distelhorst CW . Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J Biol Chem 2001; 276: 44117–44128.

    Article  CAS  Google Scholar 

  7. Takenawa T, Suetsugu S . The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 2007; 8: 37–48.

    Article  CAS  Google Scholar 

  8. Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR . A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 2004; 164: 803–809.

    Article  CAS  Google Scholar 

  9. Suetsugu S, Miki H, Takenawa T . Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun 1999; 260: 296–302.

    Article  CAS  Google Scholar 

  10. Dahl JP, Wang-Dunlop J, Gonzales C, Goad ME, Mark RJ, Kwak SP . Characterization of the WAVE1 knock-out mouse: implications for CNS development. J Neurosci 2003; 23: 3343–3352.

    Article  CAS  Google Scholar 

  11. Rawe VY, Payne C, Navara C, Schatten G . WAVE1 intranuclear trafficking is essential for genomic and cytoskeletal dynamics during fertilization: cell-cycle-dependent shuttling between M-phase and interphase nuclei. Dev Biol 2004; 276: 253–267.

    Article  CAS  Google Scholar 

  12. Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003; 424: 952–956.

    Article  CAS  Google Scholar 

  13. Cheng A, Arumugam TV, Liu D, Khatri RG, Mustafa K, Kwak S et al. Pancortin-2 interacts with WAVE1 and Bcl-xL in a mitochondria-associated protein complex that mediates ischemic neuronal death. J Neurosci 2007; 27: 1519–1528.

    Article  CAS  Google Scholar 

  14. Sung JY, Engmann O, Teylan MA, Nairn AC, Greengard P, Kim Y . WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines. Proc Natl Acad Sci USA 2008; 105: 3112–3116.

    Article  CAS  Google Scholar 

  15. Kang R, Cao LZ, Yu Y, Hu T, Wang Z, Xu WQ et al. Role of WAVE1 in drug resistance of K562/A02 leukemia cells. Zhonghua Xue Ye Xue Za Zhi 2007; 28: 379–382.

    CAS  Google Scholar 

  16. He YL, Cao LZ, Yang J, Yang MH, Xu WQ, Xie M et al. Expression of WAVE1 and p22phox in children with acute lymphocytic leukemia and the relationship of WAVE1 with oxidative stress. Zhongguo Dang Dai Er Ke Za Zhi 2009; 11: 88–92.

    CAS  Google Scholar 

  17. Oda A, Miki H, Wada I, Yamaguchi H, Yamazaki D, Suetsugu S et al. WAVE/Scars in platelets. Blood 2005; 105: 3141–3148.

    Article  CAS  Google Scholar 

  18. Yamamoto K, Ichijo H, Korsmeyer SJ . BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 1999; 19: 8469–8478.

    Article  CAS  Google Scholar 

  19. Cuvillier O, Mayhew E, Janoff AS, Spiegel S . Liposomal ET-18-OCH(3) induces cytochrome c-mediated apoptosis independently of CD95 (APO-1/Fas) signaling. Blood 1999; 94: 3583–3592.

    CAS  Google Scholar 

  20. Tang D, Kang R, Xiao W, Wang H, Calderwood SK, Xiao X . The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol 2007; 179: 1236–1244.

    Article  CAS  Google Scholar 

  21. Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y et al. Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release. J Immunol 2007; 178: 7376–7384.

    Article  CAS  Google Scholar 

  22. Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol 2007; 81: 741–747.

    Article  CAS  Google Scholar 

  23. Tang D, Shi Y, Jang L, Wang K, Xiao W, Xiao X . Heat shock response inhibits release of high mobility group box 1 protein induced by endotoxin in murine macrophages. Shock 2005; 23: 434–440.

    Article  CAS  Google Scholar 

  24. Lesser MP . Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 2006; 68: 253–278.

    Article  CAS  Google Scholar 

  25. Arai M, Yoguchi A, Takizawa T, Yokoyama T, Kanda T, Kurabayashi M et al. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca(2+)-ATPase gene transcription. Circ Res 2000; 86: 8–14.

    Article  CAS  Google Scholar 

  26. Nilsen J, Diaz Brinton R . Mechanism of estrogen-mediated neuroprotection: regulation of mitochondrial calcium and Bcl-2 expression. Proc Natl Acad Sci USA 2003; 100: 2842–2847.

    Article  CAS  Google Scholar 

  27. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS et al. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1993; 262: 1274–1277.

    Article  CAS  Google Scholar 

  28. Shimizu S, Eguchi Y, Kosaka H, Kamiike W, Matsuda H, Tsujimoto Y . Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 1995; 374: 811–813.

    Article  CAS  Google Scholar 

  29. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ . Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    Article  CAS  Google Scholar 

  30. Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ . Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 2004; 23: 1207–1216.

    Article  CAS  Google Scholar 

  31. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B . JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30: 678–688.

    Article  CAS  Google Scholar 

  32. Westphal RS, Soderling SH, Alto NM, Langeberg LK, Scott JD . Scar/WAVE-1, a Wiskott–Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J 2000; 19: 4589–4600.

    Article  CAS  Google Scholar 

  33. Ozben T . Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 2007; 96: 2181–2196.

    Article  CAS  Google Scholar 

  34. Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P . Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 2003; 101: 4098–4104.

    Article  CAS  Google Scholar 

  35. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC . Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003; 22: 8608–8618.

    Article  CAS  Google Scholar 

  36. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003; 300: 135–139.

    Article  CAS  Google Scholar 

  37. Pinton P, Rizzuto R . Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 2006; 13: 1409–1418.

    Article  CAS  Google Scholar 

  38. Youle RJ, Strasser A . The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47–59.

    Article  CAS  Google Scholar 

  39. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002; 16: 1345–1355.

    Article  CAS  Google Scholar 

  40. Brenner MK . Gene transfer and the treatment of haematological malignancy. J Intern Med 2001; 249: 345–358.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The National Natural Sciences Foundation of China (30571982, 30772353, 30973234 to LC, 30500485 to DT), Doctoral Program of Higher Education of China (20070533042 to LC), and supported in part by the National Institutes of Health grants (NIH/NIGMS, R01GM063075 and R01GM070817, to HW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, R., Tang, D., Yu, Y. et al. WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cells. Leukemia 24, 177–186 (2010). https://doi.org/10.1038/leu.2009.224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.224

Keywords

This article is cited by

Search

Quick links