Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Metabolic and genomic adaptations to winter fattening in a primate species, the grey mouse lemur (Microcebus murinus)

Abstract

Aim:

To understand the mechanisms underlying the development of metabolic changes leading to obesity remains a major world health issue. Among such mechanisms, seasonality is quite underestimated although it corresponds to the manifestation of extreme metabolic flexibility in response to a changing environment. Nevertheless, the changes induced by such flexibility are far to be understood, especially at the level of insulin signaling, genomic stability or inflammation.

Methods:

Here, we investigated the metabolic regulations displayed by a seasonal primate species, the grey mouse lemur (Microcebus murinus) that exhibits pronounced changes in body mass during the 6-month winter season: a fattening period followed by a spontaneous fat loss, without ever reaching pathological stages.

Results:

Such body weight modulations result from a combination of behavioral (food intake) and physiological (endocrine changes, switch between carb and lipid oxidation) adjustments that spontaneously operate during winter. Conversely to classical models of obesity, insulin sensitivity is paradoxically preserved during the obesogenic phase. Fat loss is associated with increased metabolic activity, especially in brown adipose tissue, and induced increased oxidative stress associated with telomere length dynamic. Furthermore, liver gene expression analysis revealed regulations in metabolic homeostasis (beta-oxidation, insulin signaling, cholesterol and lipid metabolism) but not for genes involved in inflammatory process (for example, Ifng, Tnf, Nfkb1).

Conclusion:

Altogether, these results show that mouse lemurs undergo deep physiological and genomic seasonal changes, without ever reaching a pathological stage. Further investigation is needed to decipher the underlying mechanisms, which may well be highly relevant for human therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chan M . Obesity and diabetes: the slow-motion disaster. 2016; Keynote address at the 47th meeting of the National Academy of Medicine. Available from http://www.who.int/dg/speeches/2016/obesity-diabetes-disaster/en/.

  2. Ebling FJ, Barrett P . The regulation of seasonal changes in food intake and body weight. J Neuroendocrinol 2008; 20: 827–833.

    Article  CAS  PubMed  Google Scholar 

  3. Krol E, Redman P, Thomson PJ, Williams R, Mayer C, Mercer JG et al. Effect of photoperiod on body mass, food intake and body composition in the field vole, Microtus agrestis. J Exp Biol 2005; 208 (Pt 3): 571–584.

    Article  CAS  PubMed  Google Scholar 

  4. Otis JP, Sahoo D, Drover VA, Yen CL, Carey HV . Cholesterol and lipoprotein dynamics in a hibernating mammal. PloS one 2011; 6: e29111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nelson CJ, Otis JP, Martin SL, Carey HV . Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiol Genomics 2009; 37: 43–51.

    Article  CAS  PubMed  Google Scholar 

  6. Dark J . Annual lipid cycles in hibernators: integration of physiology and Behavior. Annu Rev Nutr 2005; 25: 469–497.

    Article  CAS  PubMed  Google Scholar 

  7. Galgani JE, Moro C, Ravussin E . Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab 2008; 295: E1009–E1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Samuel VT, Petersen KF, Shulman GI . Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010; 375: 2267–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thaler JP, Schwartz MW . Minireview: Inflammation and obesity pathogenesis: the hypothalamus heats up. Endocrinology 2010; 151: 4109–4115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwon H, Pessin JE . Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne) 2013; 4: 71.

    Article  Google Scholar 

  11. Coluzzi E, Colamartino M, Cozzi R, Leone S, Meneghini C, O'Callaghan N et al. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One 2014; 9: e110963.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011; 470: 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Turbill C, Ruf T, Smith S, Bieber C . Seasonal variation in telomere length of a hibernating rodent. Biol Lett 2013; 9: 20121095.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Perret M . Change in photoperiodic cycle affects life span in a prosimian primate (Microcebus murinus). J Biol Rhythms 1997; 12: 136–145.

    Article  CAS  PubMed  Google Scholar 

  15. Languille S, Blanc S, Blin O, Canale CI, Dal-Pan A, Devau G et al. The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev 2012; 11: 150–162.

    Article  CAS  PubMed  Google Scholar 

  16. Perret M, Aujard F . Regulation by photoperiod of seasonal changes in body mass and reproductive function in gray mouse lemurs (Microcebus murinus): differential responses by sex. Int J Primatol 2001; 22: 5–24.

    Article  Google Scholar 

  17. Genin F, Perret M . Photoperiod-induced changes in energy balance in gray mouse lemurs. Physiol Behav 2000; 71: 315–321.

    Article  CAS  PubMed  Google Scholar 

  18. Genin F, Nibbelink M, Galand M, Perret M, Ambid L . Brown fat and nonshivering thermogenesis in the gray mouse lemur (Microcebus murinus). Am J Physiol Regul Integr Comp Physiol 2003; 284: R811–R818.

    Article  CAS  PubMed  Google Scholar 

  19. van den Berghe G . The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis 1991; 14: 407–420.

    Article  CAS  PubMed  Google Scholar 

  20. Rui L . Energy metabolism in the liver. Compr Physiol 2014; 4: 177–197.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Donath MY, Shoelson SE . Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11: 98–107.

    Article  CAS  PubMed  Google Scholar 

  22. R-Core-Team R . A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2016.

    Google Scholar 

  23. Schmid J, Speakman JR . Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. J Comparative Physiol B-Biochem System Environ Physiol 2000; 170: 633–641.

    Article  CAS  Google Scholar 

  24. Schmid J, Speakman JR . Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 2009; 96: 609–620.

    Article  CAS  PubMed  Google Scholar 

  25. Steppan CM, Lazar MA . Resistin and obesity-associated insulin resistance. Trends Endocrinol Metab 2002; 13: 18–23.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson OL, Jansen HT, Galbreath E, Morgenstern K, Gehring JL, Rigano KS et al. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation. Cell Metab 2014; 20: 376–382.

    Article  CAS  PubMed  Google Scholar 

  27. Samocha-Bonet D, Chisholm DJ, Tonks K, Campbell LV, Greenfield JR . Insulin-sensitive obesity in humans — a 'favorable fat' phenotype? Trends Endocrinol Metab 2012; 23: 116–124.

    Article  CAS  PubMed  Google Scholar 

  28. Rasouli N, Molavi B, Elbein SC, Kern PA . Ectopic fat accumulation and metabolic syndrome. Diabetes Obes Metab 2007; 9: 1–10.

    Article  CAS  PubMed  Google Scholar 

  29. Dardente H . Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J Neuroendocrinol 2012; 24: 249–266.

    Article  CAS  PubMed  Google Scholar 

  30. Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A et al. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci USA 2008; 105: 18238–18242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanon EA, Routledge K, Dardente H, Masson-Pevet M, Morgan PJ, Hazlerigg DG . Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol 2010; 22: 51–55.

    Article  CAS  PubMed  Google Scholar 

  32. Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y et al. Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep 2014; 9: 801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Radogna F, Diederich M, Ghibelli L . Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol 2010; 80: 1844–1852.

    Article  CAS  PubMed  Google Scholar 

  34. Korkmaz A, Topal T, Tan DX, Reiter RJ . Role of melatonin in metabolic regulation. Rev Endocr Metab Disord 2009; 10: 261–270.

    Article  CAS  PubMed  Google Scholar 

  35. Genin F, Schilling A, Claustrat B . Melatonin and methimazole mimic short-day-induced fattening in gray mouse lemurs. Physiol Behav 2003; 79: 553–559.

    Article  CAS  PubMed  Google Scholar 

  36. Garbacz WG, Lu P, Miller TM, Poloyac SM, Eyre NS, Mayrhofer G et al. Hepatic overexpression of CD36 improves glycogen homeostasis and attenuates high-fat diet induced hepatic steatosis and insulin resistance. Mol Cell Biol 2016; 36: 2715–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao X, Shen C, Zhu H, Wang C, Liu X, Sun X et al. Trans-fatty acids aggravate obesity, insulin resistance and hepatic steatosis in C57BL/6 mice, possibly by suppressing the IRS1 dependent pathway. Molecules 2016; 21: 705.

    Article  PubMed Central  Google Scholar 

  38. Liu Z, Patil IY, Jiang T, Sancheti H, Walsh JP, Stiles BL et al. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS One 2015; 10: e0128274.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Green CB, Takahashi JS, Bass J . The meter of metabolism. Cell 2008; 134: 728–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Messina A, Langlet F, Chachlaki K, Roa J, Rasika S, Jouy N et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat Neurosci 2016; 19: 835–844.

    Article  CAS  PubMed  Google Scholar 

  41. Genin F, Perret M . Daily hypothermia in captive grey mouse lemurs (Microcebus murinus): effects of photoperiod and food restriction. Comp Biochem Physiol B Biochem Mol Biol 2003; 136: 71–81.

    Article  CAS  PubMed  Google Scholar 

  42. Giroud S, Blanc S, Aujard F, Bertrand F, Gilbert C, Perret M . Chronic food shortage and seasonal modulations of daily torpor and locomotor activity in the grey mouse lemur (Microcebus murinus). Am J Physiol-Regul Integr Comp Physiol 2008; 294: R1958–R1967.

    Article  CAS  PubMed  Google Scholar 

  43. Elattar S, Satyanarayana A, Can Brown Fat . Win the battle against white fat? J Cell Physiol 2015; 230: 2311–2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ravussin E, Kozak LP . Have we entered the brown adipose tissue renaissance? Obesity Rev 2009; 10: 265–268.

    Article  CAS  Google Scholar 

  46. Suzuki T, Muramatsu T, Morioka K, Goda T, Mochizuki K . ChREBP binding and histone modifications modulate hepatic expression of the Fasn gene in a metabolic syndrome rat model. Nutrition 2015; 31: 877–883.

    Article  CAS  PubMed  Google Scholar 

  47. Oosterveer MH, Schoonjans K . Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 2014; 71: 1453–1467.

    Article  CAS  PubMed  Google Scholar 

  48. Trochet D, Mergui X, Ivkovic I, Porreca RM, Gerbault-Seureau M, Sidibe A et al. Telomere regulation during aging and tumorigenesis of the grey mouse lemur. Biochimie 2015; 113: 100–110.

    Article  CAS  PubMed  Google Scholar 

  49. Monickaraj F, Aravind S, Nandhini P, Prabu P, Sathishkumar C, Mohan V et al. Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. J Biosci 2013; 38: 113–122.

    Article  CAS  PubMed  Google Scholar 

  50. Garcia-Exposito L, O'Sullivan RJ . TZAP-ing telomeres down to size. EMBO Rep 2017; 18: 861–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jacques Epelbaum and Martine Perret for their invaluable editing contribution to this manuscript. This work was financed by national French programs granted by the CNRS (PEPS Exomod) and the MNHN (ATM Cycles de Vie). We warmly thank Marie-Stéphanie Clerget-Froidevaux and Isabelle Seugnet for technical support.

Author contributions

JT, JFR and FA designed the study; JT, DC and LR developed the methodologies and performed the analysis; JT, MG and VZ collected the data; JT, LR, JFR and FA wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Terrien.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terrien, J., Gaudubois, M., Champeval, D. et al. Metabolic and genomic adaptations to winter fattening in a primate species, the grey mouse lemur (Microcebus murinus). Int J Obes 42, 221–230 (2018). https://doi.org/10.1038/ijo.2017.195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.195

This article is cited by

Search

Quick links