Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lack of association between body mass index and plasma adiponectin levels in healthy adults

Abstract

Objectives:

To test the hypothesis that obesity (increase in fat mass) independently affects the level of adipokines: adiponectin, tumor necrosis factor-α (TNFα) and interleukin (IL)-6.

Methods:

Publications in the past decade reporting adult plasma adiponectin, leptin, TNFα and/or IL-6 levels were compiled. Mean gender-specific values were extracted from studies that included medical screening to confirm physical health (43 groups, total 4852 subjects). Correlation analysis was conducted between adipokine levels and body mass index (BMI), a widely used estimate of adiposity.

Results:

For healthy lean to obese adults of both genders, no significant correlation between plasma adiponectin and BMI was detected. There was also no gender difference in plasma adiponectin level. In contrast, leptin levels showed a positive correlation with BMI in both genders, and women had significantly higher levels of plasma leptin consistent with a higher percentage of body fat. The proinflammatory cytokine TNFα failed to show correlation with BMI. Although IL-6 showed a positive correlation with BMI in women, the obesity-related increase was very limited.

Conclusions:

Data analysis based on studies performed on healthy adults did not support the hypothesis that obesity independently affects the plasma level of adiponectin and TNFα. Reported obesity-related changes in plasma adipokine levels may be a consequence of obesity-related metabolic disorders. Future studies are especially needed to understand the homeostasis of adiponectin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hirsch J, Batchelor B . Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 1976; 5: 299–311.

    CAS  PubMed  Google Scholar 

  2. Moayyedi P . The epidemiology of obesity and gastrointestinal and other diseases: an overview. Dig Dis Sci 2008; 53: 2293–2299.

    PubMed  Google Scholar 

  3. Markoff B, Amsterdam A . Impact of obesity on hospitalized patients. Mt Sinai J Med 2008; 75: 454–459.

    PubMed  Google Scholar 

  4. Ben-Sefer E, Ben-Natan M, Ehrenfeld M . Childhood obesity: current literature, policy and implications for practice. Int Nurs Rev 2009; 56: 166–173.

    CAS  PubMed  Google Scholar 

  5. Mathieu P . Abdominal obesity and the metabolic syndrome: a surgeon's perspective. Can J Cardiol 2008; (Suppl D): 19D–23D.

    Google Scholar 

  6. Ervin RB . Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl Health Stat Report 2009; 5: 1–7.

    Google Scholar 

  7. Vgontzas A, Papanicolaou D, Bixler E, Hopper K, Lotsikas A, Lin H et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 2000; 85: 1151–1158.

    CAS  PubMed  Google Scholar 

  8. Harrington M, Gibson S, Cottrell R . A review and meta-analysis of the effect of weight loss on all-cause mortality risk. Nutr Res Rev 2009; 22: 93–108.

    PubMed  Google Scholar 

  9. Nunez N, Oh W, Rozenberg J, Perella C, Anver M, Barrett J et al. Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res 2006; 66: 5469–5476.

    CAS  PubMed  Google Scholar 

  10. Dyck D . Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab 2009; 34: 396–402.

    CAS  PubMed  Google Scholar 

  11. Pelleymounter M, Cullen M, Baker M, Hecht R, Winters D, Boone T et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269: 540–543.

    CAS  PubMed  Google Scholar 

  12. De Artinano A, Castro M . Experimental rat models to study the metabolic syndrome. Br J Nutr 2009; 102: 1246–1253.

    Google Scholar 

  13. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002; 8: 731–737.

    CAS  PubMed  Google Scholar 

  14. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002; 277: 25863–25866.

    CAS  PubMed  Google Scholar 

  15. Yatagai T, Nagasaka S, Taniguchi A, Fukushima M, Nakamura T, Kuroe A et al. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism 2003; 52: 1274–1278.

    CAS  PubMed  Google Scholar 

  16. Li S, Shin H, Ding E, van Dam R . Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2009; 302: 179–188.

    CAS  PubMed  Google Scholar 

  17. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003; 23: 85–89.

    CAS  PubMed  Google Scholar 

  18. Yang W, Lee W, Funahashi T, Tanaka S, Matsuzawa Y, Chao C et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86: 3815–3819.

    CAS  PubMed  Google Scholar 

  19. Pitombo C, Araujo E, De Souza C, Pareja J, Geloneze B, Velloso L . Amelioration of diet-induced diabetes mellitus by removal of visceral fat. J Endocrinol 2006; 191: 699–706.

    CAS  PubMed  Google Scholar 

  20. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley R et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.

    CAS  PubMed  Google Scholar 

  21. Mojiminiyi OA, Abdella NA, Al Arouj M, Ben Nakhi A . Adiponectin, insulin resistance and clinical expression of the metabolic syndrome in patients with Type 2 diabetes. Int J Obes Relat Metab Disord (Lond) 2007; 31: 213–220.

    CAS  Google Scholar 

  22. Nakashima R, Kamei N, Yamane K, Nakanishi S, Nakashima A, Kohno N . Decreased total and high molecular weight adiponectin are independent risk factors for the development of type 2 diabetes in Japanese-Americans. J Clin Endocrinol Metab 2006; 91: 3873–3877.

    CAS  PubMed  Google Scholar 

  23. Mazzali G, Di Francesco V, Zoico E, Fantin F, Zamboni G, Benati C et al. Interrelations between fat distribution, muscle lipid content, adipocytokines, and insulin resistance: effect of moderate weight loss in older women. Am J Clin Nutr 2006; 84: 1193–1199.

    CAS  PubMed  Google Scholar 

  24. Romero MM, Fernández-López J, Esteve M, Alemany M . Different modulation by dietary restriction of adipokine expression in white adipose tissue sites in the rat. Cardiovasc Diabetol 2009; 8: 42.

    PubMed Central  Google Scholar 

  25. Madsen E, Rissanen A, Bruun J, Skogstrand K, Tonstad S, Hougaard D et al. Weight loss larger than 10% is needed for general improvement of levels of circulating adiponectin and markers of inflammation in obese subjects: a 3-year weight loss study. Eur J Endocrinol 2008; 158: 179–187.

    CAS  PubMed  Google Scholar 

  26. Kanety H, Hemi R, Ginsberg S, Pariente C, Yissachar E, Barhod E et al. Total and high molecular weight adiponectin are elevated in patients with Laron syndrome despite marked obesity. Eur J Endocrinol 2009; 161: 837–844.

    CAS  PubMed  Google Scholar 

  27. Flegal K, Graubard B . Estimates of excess deaths associated with body mass index and other anthropometric variables. Am J Clin Nutr 2009; 89: 1213–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chumlea W, Guo S, Kuczmarski R, Flegal K, Johnson C, Heymsfield S et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord 2002; 26: 1596–1609.

    CAS  PubMed  Google Scholar 

  29. Cartier A, Cote M, Lemieux I, Perusse L, Tremblay A, Bouchard C et al. Sex differences in inflammatory markers: what is the contribution of visceral adiposity? Am J Clin Nutr 2009; 89: 1307–1314.

    CAS  PubMed  Google Scholar 

  30. Li C, Ford E, Zhao G, Balluz L, Giles W . Estimates of body composition with dual-energy X-ray absorptiometry in adults. Am J Clin Nutr 2009; 90: 1457–1465.

    CAS  PubMed  Google Scholar 

  31. McConway M, Johnson D, Kelly A, Griffin D, Smith J, Wallace A . Differences in circulating concentrations of total, free and bound leptin relate to gender and body composition in adult humans. Ann Clin Biochem 2000; 37: 717–723.

    CAS  PubMed  Google Scholar 

  32. Wang B, Wood I, Trayhurn P . Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 2007; 455: 479–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Valle M, Martos R, Gascon F, Canete R, Zafra MA, Morales R . Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome. Diabetes Metab 2005; 31: 55–62.

    CAS  PubMed  Google Scholar 

  34. Nishida M, Moriyama T, Sugita Y, Yamauchi-Takihara K . Abdominal obesity exhibits distinct effect on inflammatory and anti-inflammatory proteins in apparently healthy Japanese men. Cardiovasc Diabetol 2007; 6: 27.

    PubMed  PubMed Central  Google Scholar 

  35. Tsai G, Cui J, Syed H, Xia Z, Ozerdem U, McNeill J et al. Effect of N-acetylcysteine on the early expression of inflammatory markers in the retina and plasma of diabetic rats. Clin Exp Ophthalmol 2009; 37: 223–231.

    PubMed  PubMed Central  Google Scholar 

  36. Bradshaw E, Raddassi K, Elyaman W, Orban T, Gottlieb P, Kent S et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol 2009; 183: 4432–4439.

    CAS  PubMed  Google Scholar 

  37. Picciotto S, Forastiere F, Pistelli R, Koenig W, Lanki T, Ljungman P et al. Determinants of plasma interleukin-6 levels among survivors of myocardial infarction. Eur J Cardiovasc Prev Rehabil 2008; 15: 631–638.

    PubMed  Google Scholar 

  38. Licata G, Tuttolomondo A, Di Raimondo D, Corrao S, Di Sciacca R, Pinto A . Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb Haemost 2009; 101: 929–937.

    CAS  PubMed  Google Scholar 

  39. Tuttolomondo A, Di Sciacca R, Di Raimondo D, Serio A, D’Aguanno G, La Placa S et al. Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes: relationship with TOAST subtype, outcome and infarct site. J Neuroimmunol 2009; 215: 84–89.

    CAS  PubMed  Google Scholar 

  40. Gray SR, Robinson M, Nimmo MA . Response of plasma IL-6 and its soluble receptors during submaximal exercise to fatigue in sedentary middle-aged men. Cell Stress Chaperones 2008; 13: 247–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kishimoto T . Interleukin-6: from basic science to medicine—40 years in immunology. Annu Rev Immunol 2005; 23: 1–21.

    CAS  PubMed  Google Scholar 

  42. Lacour S, Gautier J, Pallardy M, Roberts R . Cytokines as potential biomarkers of liver toxicity. Cancer Biomark 2005; 1: 29–39.

    CAS  PubMed  Google Scholar 

  43. Tisdale M . Mechanisms of cancer cachexia. Physiol Rev 2009; 89: 381–410.

    CAS  PubMed  Google Scholar 

  44. Kelly T, Wilson KE, Heymsfield S . Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One 2009; 4: e7038.

    PubMed  PubMed Central  Google Scholar 

  45. Badellino K, Wolfe M, Reilly M, Rader D . Endothelial lipase is increased in vivo by inflammation in humans. Circulation 2008; 117: 678–685.

    CAS  PubMed  Google Scholar 

  46. Brydon L, O’Donnell K, Wright CE, Wawrzyniak AJ, Wardle J, Steptoe A . Circulating leptin and stress-induced cardiovascular activity in humans. Obesity (Silver Spring) 2008; 16: 2642–2647.

    CAS  Google Scholar 

  47. Gannage-Yared MH, Khalife S, Semaan M, Fares F, Jambart S, Halaby G . Serum adiponectin and leptin levels in relation to the metabolic syndrome, androgenic profile and somatotropic axis in healthy non-diabetic elderly men. Eur J Endocrinol 2006; 155: 167–176.

    CAS  PubMed  Google Scholar 

  48. Hanley AJ, Bowden D, Wagenknecht LE, Balasubramanyam A, Langfeld C, Saad MF et al. Associations of adiponectin with body fat distribution and insulin sensitivity in nondiabetic Hispanics and African-Americans. J Clin Endocrinol Metab 2007; 92: 2665–2671.

    CAS  PubMed  Google Scholar 

  49. Hara T, Fujiwara H, Nakao H, Mimura T, Yoshikawa T, Fujimoto S . Body composition is related to increase in plasma adiponectin levels rather than training in young obese men. Eur J Appl Physiol 2005; 94: 520–526.

    CAS  PubMed  Google Scholar 

  50. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    CAS  PubMed  Google Scholar 

  51. Hukshorn CJ, Lindeman JH, Toet KH, Saris WH, Eilers PH, Westerterp-Plantenga MS et al. Leptin and the proinflammatory state associated with human obesity. J Clin Endocrinol Metab 2004; 89: 1773–1778.

    CAS  PubMed  Google Scholar 

  52. Nakatani H, Hirose H, Yamamoto Y, Saito I, Itoh H . Significance of leptin and high-molecular weight adiponectin in the general population of Japanese male adolescents. Metabolism 2008; 57: 157–162.

    CAS  PubMed  Google Scholar 

  53. Ogawa T, Hirose H, Yamamoto Y, Nishikai K, Miyashita K, Nakamura H et al. Relationships between serum soluble leptin receptor level and serum leptin and adiponectin levels, insulin resistance index, lipid profile, and leptin receptor gene polymorphisms in the Japanese population. Metabolism 2004; 53: 879–885.

    CAS  PubMed  Google Scholar 

  54. Plaisance E, Grandjean P, Judd R, Jones K, Taylor J . The influence of sex, body composition, and nonesterified fatty acids on serum adipokine concentrations. Metabolism 2009; 58: 1557–1563.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rush EC, Plank LD, Yajnik CS . Interleukin-6, tumour necrosis factor-alpha and insulin relationships to body composition, metabolism and resting energy expenditure in a migrant Asian Indian population. Clin Endocrinol 2007; 66: 684–690.

    CAS  Google Scholar 

  56. Hainer V, Hlavata K, Gojova M, Kunesova M, Wagenknecht M, Kopsky V et al. Hormonal and psychobehavioral predictors of weight loss in response to a short-term weight reduction program in obese women. Physiol Res 2008; 57 (Suppl 1): S17–S27.

    CAS  PubMed  Google Scholar 

  57. Hyatt TC, Phadke RP, Hunter GR, Bush NC, Munoz AJ, Gower BA . Insulin sensitivity in African-American and white women: association with inflammation. Obesity 2009; 17: 276–282.

    CAS  PubMed  Google Scholar 

  58. Kondo T, Kobayashi I, Murakami M . Effect of exercise on circulating adipokine levels in obese young women. Endocr J 2006; 53: 189–195.

    CAS  PubMed  Google Scholar 

  59. Manning PJ, Sutherland WH, McGrath MM, de Jong SA, Walker RJ, Williams MJ . Postprandial cytokine concentrations and meal composition in obese and lean women. Obesity (Silver Spring) 2008; 16: 2046–2052.

    CAS  Google Scholar 

  60. Olszanecka-Glinianowicz M, Zahorska-Markiewicz B, Janowska J, Zurakowski A . Serum concentrations of nitric oxide, tumor necrosis factor (TNF)-alpha and TNF soluble receptors in women with overweight and obesity. Metabolism 2004; 53: 1268–1273.

    CAS  PubMed  Google Scholar 

  61. Ryan A, Nicklas B, Berman D, Elahi D . Adiponectin levels do not change with moderate dietary induced weight loss and exercise in obese postmenopausal women. Int J Obes Relat Metab Disord 2003; 27: 1066–1071.

    CAS  PubMed  Google Scholar 

  62. Valsamakis G, McTernan P, Chetty R, Al Daghri N, Field A, Hanif W et al. Modest weight loss and reduction in waist circumference after medical treatment are associated with favorable changes in serum adipocytokines. Metabolism 2004; 53: 430–434.

    CAS  PubMed  Google Scholar 

  63. Trujillo M, Scherer P . Adiponectin—journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med 2005; 257: 167–175.

    CAS  PubMed  Google Scholar 

  64. Schraw T, Wang Z, Halberg N, Hawkins M, Scherer P . Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology 2008; 149: 2270–2282.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tschritter O, Fritsche A, Thamer C, Haap M, Shirkavand F, Rahe S et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 2003; 52: 239–243.

    CAS  PubMed  Google Scholar 

  66. Tao T, Wickham E, Fan W, Yang J, Liu W . Distribution of adiponectin multimeric forms in Chinese Women with polycystic ovary syndrome and their relation to insulin resistance. Eur J Endocrinol 2010; 163: 399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mullen K, Pritchard J, Ritchie I, Snook L, Chabowski A, Bonen A et al. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol 2009; 296: R243–R251.

    CAS  PubMed  Google Scholar 

  68. Bauche I, Ait El Mkadem S, Rezsohazy R, Funahashi T, Maeda N, Miranda L et al. Adiponectin downregulates its own production and the expression of its adipoR2 receptor in transgenic mice. Biochem Biophys Res Commun 2006; 345: 1414–1424.

    CAS  PubMed  Google Scholar 

  69. Behre C . Adiponectin and its role. Scand J Clin Lab Invest 2008; 68: 1–3.

    Google Scholar 

  70. Liu M, Liu F . Transcriptional and post-translational regulation of adiponectin. Biochem J 2010; 425: 41–52.

    CAS  Google Scholar 

  71. Gustafson B, Hammarstedt A, Andersson C, Smith U . Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 2276–2283.

    CAS  PubMed  Google Scholar 

  72. Sun J, Xu Y, Dai Z, Sun Y . Intermittent high glucose stimulate MCP-l, IL-18, and PAI-1, but inhibit adiponectin expression and secretion in adipocytes dependent of ROS. Cell Biochem Biophys 2009; 55: 173–180.

    CAS  PubMed  Google Scholar 

  73. Oller do Nascimento C, Ribeiro E, Oyama L . Metabolism and secretory function of white adipose tissue: effect of dietary fat. An Acad Bras Cienc 2009; 81: 453–466.

    CAS  PubMed  Google Scholar 

  74. Lapointe A, Tchernof A, Lamarche B, Piché M, Weisnagel J, Bergeron J et al. Plasma adiponectin concentration is strongly associated with VLDL-TG catabolism in postmenopausal women. Nutr Metab Cardiovasc Dis 2010. (E-pub ahead of print).

  75. Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2003; 301: 1045–1050.

    CAS  PubMed  Google Scholar 

  76. Perez-Martinez P, Perez-Jimenez F, Lopez-Miranda J . n-3 PUFA and lipotoxicity. Biochim Biophys Acta 2010; 1801: 362–366.

    CAS  PubMed  Google Scholar 

  77. Mooradian A . Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 2009; 5: 150–159.

    CAS  PubMed  Google Scholar 

  78. Gade W, Schmit J, Collins M, Gade J . Beyond obesity: the diagnosis and pathophysiology of metabolic syndrome. Clin Lab Sci 2010; 23: 51–61.

    PubMed  Google Scholar 

  79. Cnop M . Fatty acids and glucolipotoxicity in the pathogenesis of type 2 diabetes. Biochem Soc Trans 2008; 36: 348–352.

    CAS  PubMed  Google Scholar 

  80. Virtue S, Vidal-Puig A . Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta 2010; 1801: 338–349.

    CAS  PubMed  Google Scholar 

  81. Krogh-Madsen R, Møller K, Dela F, Kronborg G, Jauffred S, Pedersen B . Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab 2004; 286: E766–E772.

    CAS  PubMed  Google Scholar 

  82. Holman R, Adams C, Nelson R, Grater S, Jaskiewicz J, Johnson S et al. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J Nutr 1995; 125: 901–907.

    CAS  PubMed  Google Scholar 

  83. Mullen K, Tishinsky J, Robinson L, Dyck D . Skeletal muscle inflammation is not responsible for the rapid impairment in adiponectin response with high fat feeding in rats. Am J Physiol Regul Integr Comp Physiol 2010; 299: R500–R508.

    CAS  PubMed  Google Scholar 

  84. Gallo S, Egeland G, Meltzer S . Plasma fatty acids are associated with circulating adiponectin in overweight adolescent girls. FASEB J 2007; 21: 834.10.

    Google Scholar 

  85. Gallo S, Egeland G, Meltzer S, Legault L, Kubow S . Plasma fatty acids and desaturase activity are associated with circulating adiponectin in healthy adolescent girls. J Clin Endocrinol Metab 2010; 95: 2410–2417.

    CAS  PubMed  Google Scholar 

  86. Fernández-Real J, Vendrell J, Ricart W . Circulating adiponectin and plasma fatty acid profile. Clin Chem 2005; 5: 603–609.

    Google Scholar 

  87. Bernsteina E, Koutkiaa P, Ljungquista K, Breua J, Canavana B, Grinspoon S . Acute regulation of adiponectin by free fatty acids. Metabolism 2004; 53: 790–793.

    Google Scholar 

  88. Plaisance E, Lukasova M, Offermanns S, Zhang Y, Cao G, Judd R . Niacin stimulates adiponectin secretion through the GPR109A receptor. Am J Physiol Endocrinol Metab 2009; 296: E549–E558.

    CAS  PubMed  Google Scholar 

  89. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    CAS  PubMed  Google Scholar 

  90. Skurk T, Alberti-Huber C, Herder C, Hauner H . Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 2007; 92: 1023–1033.

    CAS  PubMed  Google Scholar 

  91. Pussinen P, Tuomisto K, Jousilahti P, Havulinna AS, Sundvall J, Salomaa V . Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol 2007; 27: 1433–1439.

    CAS  PubMed  Google Scholar 

  92. Radaelli A, Loardi C, Cazzaniga M, Balestri G, DeCarlini C, Cerrito MG et al. Inflammatory activation during coronary artery surgery and its dose-dependent modulation by statin/ACE-inhibitor combination. Arterioscler Thromb Vasc Biol 2007; 27: 2750–2755.

    CAS  PubMed  Google Scholar 

  93. Danesh J, Kaptoge S, Mann AG, Sarwar N, Wood A, Angleman S et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med 2008; 5: e78.

    PubMed  PubMed Central  Google Scholar 

  94. O’Rahilly S . Human genetics illuminates the paths to metabolic disease. Nature 2009; 462: 307–314.

    PubMed  Google Scholar 

  95. Shoelson SE, Goldfine AB . Fanning the flames of obesity-induced inflammation. Nat Med 2009; 15: 373–374.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The statistical consultation provided by Dr Yow-Wu Wu of University at Buffalo, School of Nursing, is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-M Kuo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, SM., Halpern, M. Lack of association between body mass index and plasma adiponectin levels in healthy adults. Int J Obes 35, 1487–1494 (2011). https://doi.org/10.1038/ijo.2011.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.20

Keywords

This article is cited by

Search

Quick links