Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study

Abstract

Objective:

This study tested whether global and regional brain volumes correlated with body mass index (BMI) and increases in BMI over 1-year follow-up.

Methods:

A total of 83 young females (M age=18.4, s.d.=2.8; BMI range=17.3–38.9) were scanned using magnetic resonance imaging. Voxel-based morphometry was used to assess global brain volume and regional gray matter (GM) and white matter (WM) volumes in regions implicated in taste, reward and inhibitory control.

Results:

Obese participants had less total GM volume than lean and overweight participants. Obese participants had lower total WM volume than overweight participants. BMI correlated with higher WM volumes in the middle temporal gyrus, fusiform gyrus, parahippocampal gyrus, Rolandic operculum and dorsal striatum. Trend-level reduced GM volumes in the superior frontal gyrus and middle frontal gyrus were related to increases in BMI over 1-year follow-up.

Conclusion:

Findings suggest that BMI is related to global and regional differences in brain matter volume in female adolescents. Most importantly, findings suggest that low GM volume in regions implicated in inhibitory control are related to future weight gain. Results taken in conjunction with prior findings suggest that abnormalities in regional GM volumes, but not WM volumes, increase the risk for future weight gain and abnormalities in regional WM volumes, but not GM volumes, are secondary to weight gain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hedley AA, Odgen CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM . Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2000. JAMA 2004; 291: 2847–2850.

    Article  CAS  PubMed  Google Scholar 

  2. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM . Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 2010; 303: 242–249.

    Article  CAS  PubMed  Google Scholar 

  3. Flegal KM, Graubard BI, Williamson DF, Gail MH . Excess deaths associated with underweight, overweight, and obesity. JAMA 2005; 293: 1861–1867.

    Article  CAS  PubMed  Google Scholar 

  4. Jeong SK, Nam HS, Son MH, Son EJ, Cho KH . Interactive effect of obesity indexes on cognition. Demet Geriatr Cogn Disord 2005; 19: 91–96.

    Article  Google Scholar 

  5. Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry Jr CP, Yaffe K . Obesity in middle age and future risk of dementia: a 27 longitudinal population based study. BMJ 2005; 330: 1360.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 2007; 37: 410–421.

    Article  PubMed  Google Scholar 

  7. Stice E, Spoor S, Bohon C, Veldhuizen M, Small DM . Relation of reward from food intake and anticipated intake to obesity: A functional magnetic resonance imaging study. J Abnorm Psychol 2008; 117: 924–935.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stice E, Yokum S, Bohon C, Marti N, Smolen A . Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 2010; 50: 1618–1625.

    Article  CAS  PubMed  Google Scholar 

  9. Stoeckel LE, Weller RE, Cook 3rd EW, Twieg DB, Knowlton RC, Cox JE . Widespread reward system activation in obese women in response to pictures of high-calorie foods. Neuroimage 2008; 41: 636–647.

    Article  PubMed  Google Scholar 

  10. Yokum S, Ng J, Stice E . Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity 2011; e-pub ahead of print 16 June 2011; doi:10.1038/oby.2011.168.

    Article  PubMed  Google Scholar 

  11. Stice E, Yokum S, Burger KS, Epstein LH, Small DM . Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J Neurosci 2011; 31: 4360–4366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Volkow ND, Wang GJ, Fowler JS, Telang F . Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 2008; 363: 3191–3200.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    Article  CAS  PubMed  Google Scholar 

  14. Geha P, Aschenbrenner K, Felsted JA, O'Malley SS, Small DM . Smokers have differential brain response to food in regions that predicted weight gain in non-smokers. PloS One 2011; in press.

  15. Stice E, Spoor S, Bohon C, Small DM . Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008; 322: 449–452.

    Article  CAS  PubMed  Google Scholar 

  16. Noble EP, Gottschalk LA, Fallon JH, Ritchie TL, Wu JC . D2 dopamine receptor polymorphism and brain regional glucose metabolism. Am J Med Genet 1997; 74: 162–166.

    Article  CAS  PubMed  Google Scholar 

  17. Tupala E, Hall H, Bergstrom K, Mantere T, Rasanen P, Sarkioja T et al. Dopamine D2 receptors and transporters in type 1 and 2 alcoholics measured with human whole hemisphere autoradiography. Hum Brain Mapp 2003; 20: 91–102.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kiyatkin EA, Gratton A . Electrochemical monitoring of extracellular dopamine in nucleus accumbens of rats lever-pressing for food. Brain Res 1994; 652: 225–234.

    Article  CAS  PubMed  Google Scholar 

  19. Schutz Y, Weinsier R, Hunter GR . Assessment of free-living physical activity in humans: An overview of currently available and proposed new measures. Obes Res 2001; 9: 368–379.

    Article  CAS  PubMed  Google Scholar 

  20. Alsio J, Olszewski P, Norback A, Gunarsson Z, Levine A, Rickering C et al. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience 2010; 171: 779–787.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson PM, Kenny PJ . Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010; 13: 635–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kelley AE, Will MJ, Steininger TL, Zhang M, Haber SN . Restricted daily consumption of a highly palatable food (chocolate Ensure (R)) alters striatal enkephalin gene expression. Eur J Neurosci 2003; 18: 2592–2598.

    Article  CAS  PubMed  Google Scholar 

  23. Stice E, Yokum S, Blum K, Bohon C . Weight gain is associated with reduced striatal response to palatable food. J Neurosci 2010; 30: 13105–13109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ward MA, Carlsson CM, Trivedi MA, Sager MA, Johnson SC . The effect of body mass index on global brain volume in middle-aged adults: a cross-sectional study. BMC Neurol 2005; 5: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Taki Y, Kinomura S, Sato K, Inoue K, Goto R, Okada K et al. Relationship between body mass index and gray matter volume in 1428 healthy individuals. Obesity 2008; 16: 119–124.

    Article  PubMed  Google Scholar 

  26. Pannacciulli N, Del Parigi A, Chen K, Le DS, Reiman EM, Tataranni PA . Brain abnormalities in human obesity: A voxel-based morphometric study. Neuroimage 2006; 31: 1419–1425.

    Article  PubMed  Google Scholar 

  27. Klein SB, Thorn BM (eds). Biol Psychol. Worth Publishers: New York, 2007.

    Google Scholar 

  28. Pannacciulli N, Le DS, Chen K, Reiman EM, Krakoff J . Relationships between plasma leptin concentrations and human brain structure: a voxel-based morphometric study. Neurosci Lett 2007; 412: 248–253.

    Article  CAS  PubMed  Google Scholar 

  29. Walther K, Birdsill AC, Glisky EL, Ryan L . Structural brain differences and cognitive functioning related to body mass index in older females. Hum Brain Mapp 2010; 31: 1052–1064.

    Article  PubMed  Google Scholar 

  30. Horstmann A, Busse FP, Mathar D, Muller K, Lepsien J, Schlög H et al. Obesity-related differences between women and men in brain structure and goal-directed behavior. Front Hum Neurosci 2011; 5: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maayan L, Hoogendoorn C, Sweat V, Convit A . Disinhibited eating in obese adolescents is associated with orbitfrontal volume reductions and executive dysfunction. Obesity 2011; 19: 1382–1387.

    Article  PubMed  Google Scholar 

  32. Haltia LT, Viljanen A, Parkkola R, Kemppainen N, Rinne JO, Nuutila P et al. White matter expansion in human obesity and the recovering effect of dieting. J Clin Endocrinol Metab 2007; 92: 3278–3284.

    Article  CAS  PubMed  Google Scholar 

  33. Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH et al. Brain structure and obesity. Hum Brain Mapp 2010; 31: 353–364.

    PubMed  Google Scholar 

  34. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333–336.

    Article  CAS  PubMed  Google Scholar 

  35. Doupis J, Rahangdale S, Gnardellis C, Pena S, Mlahotra A, Veves A . Effects of diabetes and obesity on vascular reactivity, inflammatory cytokines, and growth factors. Obesity 2010; 19: 729–735.

    Article  PubMed  Google Scholar 

  36. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann M, Ristow M et al. Inflammatory cytokines and the risk to develop type 2 diabetes. Diabetes 2003; 52: 812–817.

    Article  CAS  PubMed  Google Scholar 

  37. Hu F, Meigs J, Li T, Rifai N, Manson J . Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 2004; 53: 693–700.

    Article  CAS  PubMed  Google Scholar 

  38. Jefferson A, Massaro J, Wolf P, Seshadri S, Au R, Vasan R et al. Inflammatory biomarkers are associated with total brain volume: the Framingham Heart Study. Neurology 2007; 68: 1032–1038.

    Article  CAS  PubMed  Google Scholar 

  39. Marsland A, Gianaros P, Abramowitch S, Manuck S, Hariri A . Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry 2008; 15: 484–490.

    Article  Google Scholar 

  40. Willette A, Bendlin B, McLaren D, Canu E, Kastman E, Kosmatka K et al. Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. Neuroimage 2010; 51: 9870–9994.

    Article  Google Scholar 

  41. You T, Sonntag W, Leng X, Carter C . Lifelong caloric restriction and interleukin-6 secretion from adipose tissue: Effects on physical performance decline in aged rats. J Gerontol A Biol Sci Med Sci 2007; 62: 1082–1087.

    Article  PubMed  Google Scholar 

  42. Pocai A, Lam TK, Obici S, Gutierrez-Juarez R, Muse ED, Arduini A et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest 2006; 116: 1081–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mattson MP, Duan W, Chan SL, Cheng A, Haughey N, Gary DS et al. Neuroprotective and neurorestorative signal transduction mechanisms in brain aging: modifications by genes, diet, and behavior. Neurobiol Aging 2002; 23: 695–705.

    Article  CAS  PubMed  Google Scholar 

  44. Wang GJ, Volkow ND, Fowler JS . The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002; 6: 601–609.

    Article  CAS  PubMed  Google Scholar 

  45. Nederkoorn C, Braet C, Van Eijs Y, Tanghe A, Jansen A . Why obese children cannot resist food: The role of impulsivity. Eat Behav 2006; 7: 315–322.

    Article  PubMed  Google Scholar 

  46. Pickering AD, Diaz A, Gray JA . Personality and reinforcement: An exploration using a maze learning task. Pers Individ Dif 1995; 18: 541–558.

    Article  Google Scholar 

  47. Diergaarde L, Pattij T, Nawijn L, Schoffelmeer AN, Vries TJ . Trait impulsivity predicts escalation of sucrose seeking and hypersensitivity to sucrose-associated stimuli. Behav Neurosci 2002; 123: 794–803.

    Article  Google Scholar 

  48. Matsuo K, Nicoletti M, Nemoto K, Hatch JP, Peluso MA, Nery FG et al. A voxel- based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp 2009; 30: 1188–1195.

    Article  PubMed  Google Scholar 

  49. Batterink L, Yokum S, Stice E . Obese versus lean individuals show reduced inhibitory control in response to food. Neuroimage 2010; 52: 1696–1703.

    Article  PubMed  Google Scholar 

  50. McCaffery J, Haley A, Sweet L, Phelan S, Raynor H, Parigi A et al. Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. Am J Clin Nutr 2009; 90: 928–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cornier MA, Salzberg AK, Endly DC, Bessesen DH, Tregellas JR . Sex-based differences in the behavioral and neuronal responses to food. Physiol Behav 2010; 99: 538–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dietz WH, Robinson TN . Use of body mass index (BMI) as a measure of overweight in children and adolescents. J Pediatr 1998; 132: 191–193.

    Article  CAS  PubMed  Google Scholar 

  53. Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI, Dietz WH . Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Int J Obes 2002; 75: 978–985.

    CAS  Google Scholar 

  54. Steinberger J, Jacobs DR, Raatz S, Moran A, Hong C-P, Sinaiko AR . Comparison of body fatness measurements by BMI and skinfolds vs dual energy X-ray absorptiometry and their relation to cardiovascular risk factors in adolescents. Int J Obes 2005; 29: 1346–1352.

    Article  CAS  Google Scholar 

  55. Kuczmarski R, Ogden C, Grummer-Strawn L, Flegal K, Guo S, Wei R et al. CDC growth charts: United States. Adv Data 2000; 8: 1–27.

    Google Scholar 

  56. Smith S . Fast robust automated brain extraction. Hum Brain Mapp. 2002; 17: 143–155.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Worsley KJ, Friston KJ . Analysis of fMRI time-series revisited-again. Neuroimage 1995; 2: 173–181.

    Article  CAS  PubMed  Google Scholar 

  58. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH . An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 1233–1239.

    Article  PubMed  Google Scholar 

  59. Cohen J . Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Erlbaum: Hillsdale, NJ, 1988.

    Google Scholar 

  60. Kotani K, Tokunaga K, Fujioka S, Kobatake T, Keno Y, Yoshida S et al. Sexual dimorphism of age-realted changes in whole-body fat distribution in obese. In J Obes Relat Metabl Disord 1994; 18: 207–202.

    CAS  Google Scholar 

  61. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001; 294: 2166–2170.

    Article  CAS  PubMed  Google Scholar 

  62. Bergman RN, Kim SP, Catalano KJ, Hsu IR, Chiu JD, Kabir M et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity 2006; 14 (Suppl 1): 16S–19S.

    Article  CAS  PubMed  Google Scholar 

  63. Wandell BA . Computational neuroimaging of human visual cortex. A Rev Neurosci 1999; 10: 145–173.

    Article  Google Scholar 

  64. Kanwisher N, Wojciulik, E . Visual Attention: Insights from Brain Imaging. Nat Rev Neurosci 2000; 1: 91–100.

    Article  CAS  PubMed  Google Scholar 

  65. Van der Laan LN, de Ridder DTD, Viergever MA, Smeets PAM . The first taste is always with the eyes: a meta-analysis on the neural correlates of visual food cues. Neuroimage 2011; 55: 296–303.

    Article  CAS  PubMed  Google Scholar 

  66. Ashburner J, Friston K . Why voxel-based morphometry should be used. Neuroimage 2001; 14: 1238–1243.

    Article  CAS  PubMed  Google Scholar 

  67. Mechelli A, Price CJ, Friston K, Ashburner J . Voxel-based morphometry of the human brain: methods and applications. Cur Med Imag Rev 2005; 1: 1–9.

    Article  Google Scholar 

  68. Del Parigi A, Chen K, Gautier J-F, Salbe AD, Pratley RE, Ravussin E et al. Sex differences in the human brain's response to hunger and satiation. Am J Clin Nutr 2002; 75: 1017–1022.

    Article  CAS  PubMed  Google Scholar 

  69. Small DM, Jones-Gotman M, Dagher A . Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 2003; 19: 1709–1715.

    Article  PubMed  Google Scholar 

  70. Hinton EC, Parkinson JA, Holland AJ, Arana FS, Roberts AC, Owen AM . Neural contributions to the motivational control of appetite in humans. Eur J Neurosci 2004; 20: 1411–1418.

    Article  PubMed  Google Scholar 

  71. Kobayashi M, Tekeda M, Hattori N, Fukanaga M, Sasabe T, Inoue N et al. Functional imaging of gustatory perception and imagery: ‘top-down’ processing of gustatory signals. Neuroimage 2004; 23: 1271–1282.

    Article  PubMed  Google Scholar 

  72. Kringelbach ML, Rolls ET . The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 2004; 72: 341–372.

    Article  PubMed  Google Scholar 

  73. Gazdzinski S, Kornak J, Weiner MW, Meyerhoff DJ . Body mass index and magnetic resonance markers of brain integrity in adults. Ann Neurol 2008; 63: 652–657.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jagust W, Harvey D, Mungas D, Haan M . Central obesity and the aging brain. Arch Neurol 2005; 62: 1545–1548.

    PubMed  Google Scholar 

  75. Sena A, Sarliève LL, Rebel G . Brain myelin of genetically obese mice. J Neurol Sci 1985; 68: 233–243.

    Article  CAS  PubMed  Google Scholar 

  76. Menon V, Adleman N, White CD, Glover GH, Reiss AL . Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp 2001; 12: 131–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tatarinni PA, DelParigi A . Functional neuroimaging: a new generation of human brain studies in obesity research. Obes Rev 2003; 4: 229–238.

    Article  Google Scholar 

  78. McCarthy HD, Cole TJ, Fry T, Jebb SA, Prentic AM . Body fat reference curves for children. Int J Obesity 2006; 30: 598–602.

    Article  CAS  Google Scholar 

  79. Prentice AM, Jebb SA . Beyond body mass index. Obes Rev 2001; 2: 141–147.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Roadmap Supplement for Interdisciplinary Research in Behavioral and Biological Sciences (R1MH64560A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Yokum.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokum, S., Ng, J. & Stice, E. Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study. Int J Obes 36, 656–664 (2012). https://doi.org/10.1038/ijo.2011.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.175

Keywords

This article is cited by

Search

Quick links