Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plasmids encoding the mucosal chemokines CCL27 and CCL28 are effective adjuvants in eliciting antigen-specific immunity in vivo

Abstract

A hurdle facing DNA vaccine development is the ability to generate strong immune responses systemically and at local immune sites. We report a novel systemically administered DNA vaccination strategy using intramuscular codelivery of CCL27 or CCL28, which elicited elevated peripheral IFN-γ and antigen-specific IgG while driving antigen-specific T-cell secretion of cytokine and antibody production in the gut-associated lymphoid tissue and lung. This strategy resulted in induction of long-lived antibody responses that neutralized influenza A/PR8/34 and protected mice from morbidity and mortality associated with a lethal intranasal viral challenge. This is the first example of the use of CCL27 and CCL28 chemokines as adjuvants to influence a DNA vaccine strategy, suggesting further examination of this approach for manipulation of vaccine-induced immunity impacting both quality and phenotype of responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Schoenly KA, Weiner DB . HIV-1 vaccine development: recent advances in the CTL platform ‘spotty business’. J Virol 2008; 82: 3166–3180.

    Article  CAS  PubMed  Google Scholar 

  2. Kutzler MA, Weiner DB . DNA vaccines: ready for prime time? Nat Rev Genet 2008; 9: 776–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kodihalli S, Kobasa DL, Webster RG . Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine 2000; 18: 2592–2599.

    Article  CAS  PubMed  Google Scholar 

  4. Kutzler MA, Robinson TM, Chattergoon MA, Choo DK, Choo AY, Choe PY et al. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J Immunol 2005; 175: 112–123.

    Article  CAS  PubMed  Google Scholar 

  5. Chattergoon MA, Saulino V, Shames JP, Stein J, Montaner LJ, Weiner DB . Co-immunization with plasmid IL-12 generates a strong T-cell memory response in mice. Vaccine 2004; 22: 1744–1750.

    Article  CAS  PubMed  Google Scholar 

  6. Chattergoon MA, Kim JJ, Yang JS, Robinson TM, Lee DJ, Dentchev T et al. Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol 2000; 18: 974–979.

    Article  CAS  PubMed  Google Scholar 

  7. Barouch DH, Letvin NL, Seder RA . The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunol Rev 2004; 202: 266–274.

    Article  CAS  PubMed  Google Scholar 

  8. Lori F, Weiner DB, Calarota SA, Kelly LM, Lisziewicz J . Cytokine-adjuvanted HIV-DNA vaccination strategies. Springer Semin Immunopathol 2006; 28: 231–238.

    Article  CAS  PubMed  Google Scholar 

  9. Ulmer JB, Wahren B, Liu MA . Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 2006; 12: 216–222.

    Article  CAS  PubMed  Google Scholar 

  10. Fuller DH, Loudon P, Schmaljohn C . Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 2006; 40: 86–97.

    Article  CAS  PubMed  Google Scholar 

  11. Hokey DA, Weiner DB . DNA vaccines for HIV: challenges and opportunities. Springer Semin Immunopathol 2006; 28: 267–279.

    Article  CAS  PubMed  Google Scholar 

  12. Lee S, Gierynska M, Eo SK, Kuklin N, Rouse BT . Influence of DNA encoding cytokines on systemic and mucosal immunity following genetic vaccination against herpes simplex virus. Microbes Infect 2003; 5: 571–578.

    Article  CAS  PubMed  Google Scholar 

  13. Kaneko H, Bednarek I, Wierzbicki A, Kiszka I, Dmochowski M, Wasik TJ et al. Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 2000; 267: 8–16.

    Article  CAS  PubMed  Google Scholar 

  14. Kusakabe K, Xin KQ, Katoh H, Sumino K, Hagiwara E, Kawamoto S et al. The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an HIV-1-specific DNA vaccine. J Immunol 2000; 164: 3102–3111.

    Article  CAS  PubMed  Google Scholar 

  15. Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW . DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 2002; 100: 1153–1159.

    Article  CAS  PubMed  Google Scholar 

  16. Bagarazzi ML, Boyer JD, Javadian MA, Chattergoon MA, Shah AR, Cohen AD et al. Systemic and mucosal immunity is elicited after both intramuscular and intravaginal delivery of human immunodeficiency virus type 1 DNA plasmid vaccines to pregnant chimpanzees. J Infect Dis 1999; 180: 1351–1355.

    Article  CAS  PubMed  Google Scholar 

  17. Wang B, Dang K, Agadjanyan MG, Srikantan V, Li F, Ugen KE et al. Mucosal immunization with a DNA vaccine induces immune responses against HIV-1 at a mucosal site. Vaccine 1997; 15: 821–825.

    Article  CAS  PubMed  Google Scholar 

  18. Liu MA, Wahren B, Karlsson Hedestam GB . DNA vaccines: recent developments and future possibilities. Hum Gene Ther 2006; 17: 1051–1061.

    Article  CAS  PubMed  Google Scholar 

  19. Dhama K, Mahendran M, Gupta PK, Rai A . DNA vaccines and their applications in veterinary practice: current perspectives. Vet Res Commun 2008; 32: 341–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bergman PJ . Canine oral melanoma. Clin Tech Small Anim Pract 2007; 22: 55–60.

    Article  PubMed  Google Scholar 

  21. Martin JE, Pierson TC, Hubka S, Rucker S, Gordon IJ, Enama ME et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis 2007; 196: 1732–1740.

    Article  PubMed  Google Scholar 

  22. Liu MA, Ulmer JB . Human clinical trials of plasmid DNA vaccines. Adv Genet 2005; 55: 25–40.

    Article  CAS  PubMed  Google Scholar 

  23. McKay PF, Barouch DH, Santra S, Sumida SM, Jackson SS, Gorgone DA et al. Recruitment of different subsets of antigen-presenting cells selectively modulates DNA vaccine-elicited CD4+ and CD8+ T lymphocyte responses. Eur J Immunol 2004; 34: 1011–1020.

    Article  CAS  PubMed  Google Scholar 

  24. Kutzler MA, Weiner DB . Developing DNA vaccines that call to dendritic cells. J Clin Invest 2004; 114: 1241–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boyer JD, Kim J, Ugen K, Cohen AD, Ahn L, Schumann K et al. HIV-1 DNA vaccines and chemokines. Vaccine 1999; 17 (Suppl 2): S53–S64.

    Article  CAS  PubMed  Google Scholar 

  26. Sin J, Kim JJ, Pachuk C, Satishchandran C, Weiner DB . DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th1-type CD4(+) T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. J Virol 2000; 74: 11173–11180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JJ, Yang JS, Dentchev T, Dang K, Weiner DB . Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J Interferon Cytokine Res 2000; 20: 487–498.

    Article  CAS  PubMed  Google Scholar 

  28. Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA 1999; 96: 14470–14475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kunkel EJ, Butcher EC . Chemokines and the tissue-specific migration of lymphocytes. Immunity 2002; 16: 1–4.

    Article  CAS  PubMed  Google Scholar 

  30. Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC . CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 2001; 194: 1541–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soler D, Humphreys TL, Spinola SM, Campbell JJ . CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking. Blood 2003; 101: 1677–1682.

    Article  CAS  PubMed  Google Scholar 

  32. Lazarus NH, Kunkel EJ, Johnston B, Wilson E, Youngman KR, Butcher EC . A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol 2003; 170: 3799–3805.

    Article  CAS  PubMed  Google Scholar 

  33. Pan J, Kunkel EJ, Gosslar U, Lazarus N, Langdon P, Broadwell K et al. A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol 2000; 165: 2943–2949.

    Article  CAS  PubMed  Google Scholar 

  34. Feng N, Jaimes MC, Lazarus NH, Monak D, Zhang C, Butcher EC et al. Redundant role of chemokines CCL25/TECK and CCL28/MEC in IgA+ plasmablast recruitment to the intestinal lamina propria after rotavirus infection. J Immunol 2006; 176: 5749–5759.

    Article  CAS  PubMed  Google Scholar 

  35. Hieshima K, Kawasaki Y, Hanamoto H, Nakayama T, Nagakubo D, Kanamaru A et al. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J Immunol 2004; 173: 3668–3675.

    Article  CAS  PubMed  Google Scholar 

  36. Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A, Yoshie O . Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol 2003; 170: 1136–1140.

    Article  CAS  PubMed  Google Scholar 

  37. Morteau O, Gerard C, Lu B, Ghiran S, Rits M, Fujiwara Y et al. An indispensable role for the chemokine receptor CCR10 in IgA antibody-secreting cell accumulation. J Immunol 2008; 181: 6309–6315.

    Article  CAS  PubMed  Google Scholar 

  38. Calarota SA, Weiner DB . Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol Rev 2004; 199: 84–99.

    Article  CAS  PubMed  Google Scholar 

  39. Shedlock DJ, Weiner DB . DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 2000; 68: 793–806.

    CAS  PubMed  Google Scholar 

  40. Xu R, Megati S, Roopchand V, Luckay A, Masood A, Garcia-Hand D et al. Comparative ability of various plasmid-based cytokines and chemokines to adjuvant the activity of HIV plasmid DNA vaccines. Vaccine 2008; 26: 4819–4829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002; 8: 157–165.

    Article  CAS  PubMed  Google Scholar 

  42. Loetscher P, Seitz M, Baggiolini M, Moser B . Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J Exp Med 1996; 184: 569–577.

    Article  CAS  PubMed  Google Scholar 

  43. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 1998; 28: 2760–2769.

    Article  CAS  PubMed  Google Scholar 

  44. Sallusto F, Mackay CR, Lanzavecchia A . Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997; 277: 2005–2007.

    Article  CAS  PubMed  Google Scholar 

  45. Olson TS, Ley K . Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 2002; 283: R7–R28.

    Article  CAS  PubMed  Google Scholar 

  46. Lukacs NW . Migration of helper T-lymphocyte subsets into inflamed tissues. J Allergy Clin Immunol 2000; 106: S264–S269.

    Article  CAS  PubMed  Google Scholar 

  47. Robinson HL, Boyle CA, Feltquate DM, Morin MJ, Santoro JC, Webster RG . DNA immunization for influenza virus: studies using hemagglutinin- and nucleoprotein-expressing DNAs. J Infect Dis 1997; 176 (Suppl 1): S50–S55.

    Article  CAS  PubMed  Google Scholar 

  48. Kim JJ, Nottingham LK, Sin JI, Tsai A, Morrison L, Oh J et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J Clin Invest 1998; 102: 1112–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ogawa T, Tarkowski A, McGhee ML, Moldoveanu Z, Mestecky J, Hirsch HZ et al. Analysis of human IgG and IgA subclass antibody-secreting cells from localized chronic inflammatory tissue. J Immunol 1989; 142: 1150–1158.

    CAS  PubMed  Google Scholar 

  50. Mestecky J, Jackson S, Moldoveanu Z, Nesbit LR, Kulhavy R, Prince SJ et al. Paucity of antigen-specific IgA responses in sera and external secretions of HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 2004; 20: 972–988.

    Article  CAS  PubMed  Google Scholar 

  51. Mozdzanowska K, Feng J, Eid M, Zharikova D, Gerhard W . Enhancement of neutralizing activity of influenza virus-specific antibodies by serum components. Virology 2006; 352: 418–426.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Pennsylvania Department of Pathology Histology Core and Daniel Martinez for their help with immunohistochemical analyses. We would also like to thank Dr Jean D Boyer for her scientific guidance. CCR10 knockout mice were a generous gift from Drs Craig Gerard and Olivier Morteau. Amy Quinn and Carolyn Clarke provided molecular cloning expertise. In addition, we would like to acknowledge Dr Walter Gerhard, Krystyna Mozdzanowska and Darya Zharikova for their helpful comments and expertise on influenza A/PR8/34 mouse studies and neutralization assays. We would like to thank Mr Albert Sylvester, Ms Noshin Kathuria, Philip Choe and Michelle Nater for their help in the mucosal immune assays and analysis. Dr Jiri Mestecky also contributed scientific guidance for the humoral analysis on mucosal tissue and fecal extracts. We would also like to acknowledge Pamela Fried and Diana Winters from Drexel University College of Medicine Academic Publishing Services for their editorial, formatting and journal submission expertise. This work is supported by grants funded through the National Institutes of Health including an F32AI054152 through NIAIDS (MK), an N01A1154 NIAIDS-HVDDT (DBW), an NIH-NIAID-HIVRAD grant (DBW) and a T32-A107632 (KAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D B Weiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutzler, M., Kraynyak, K., Nagle, S. et al. Plasmids encoding the mucosal chemokines CCL27 and CCL28 are effective adjuvants in eliciting antigen-specific immunity in vivo. Gene Ther 17, 72–82 (2010). https://doi.org/10.1038/gt.2009.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.112

Keywords

This article is cited by

Search

Quick links