Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies?

Abstract

While the host immune response following primary human cytomegalovirus (HCMV) infection is generally effective at stopping virus replication and dissemination, virus is never cleared by the host and like all herpesviruses, persists for life. At least in part, this persistence is known to be facilitated by the ability of HCMV to establish latency in myeloid cells in which infection is essentially silent with, importantly, a total lack of new virus production. However, although the viral transcription programme during latency is much suppressed, a number of viral genes are expressed during latent infection at the protein level and many of these have been shown to have profound effects on the latent cell and its environment. Intriguingly, many of these latency-associated genes are also expressed during lytic infection. Therefore, why the same potent host immune responses generated during lytic infection to these viral gene products are not recognized during latency, thereby allowing clearance of latently infected cells, is far from clear. Reactivation from latency is also a major cause of HCMV-mediated disease, particularly in the immune compromised and immune naive, and is also likely to be a major source of virus in chronic subclinical HCMV infection which has been suggested to be associated with long-term diseases such as atherosclerosis and some neoplasias. Consequently, understanding latency and why latently infected cells appear to be immunoprivileged is crucial for an understanding of the pathogenesis of HCMV and may help to design strategies to eliminate latent virus reservoirs, at least in certain clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rubin RH . Cytomegalovirus in solid organ transplantation. Transpl Infect Dis 2001; 3( Suppl 2): 1–5.

    CAS  PubMed  Google Scholar 

  2. Sinclair J, Sissons P . Latency and reactivation of human cytomegalovirus. J Gen Virol 2006; 87: 1763–1779.

    Article  CAS  PubMed  Google Scholar 

  3. Jackson SE, Mason GM, Wills MR . Human cytomegalovirus immunity and immune evasion. Virus Res 2011; 157: 151–160.

    Article  CAS  PubMed  Google Scholar 

  4. Powers C, DeFilippis V, Malouli D, Fruh K . Cytomegalovirus immune evasion. Curr Top Microbiol Immunol 2008; 325: 333–359.

    CAS  PubMed  Google Scholar 

  5. Amsler L, Verweij MC, DeFilippis VR . The tiers and dimensions of evasion of the type I interferon response by human cytomegalovirus. J Mol Biol 2013; 425: 4857–4871.

    Article  CAS  PubMed  Google Scholar 

  6. McSharry BP, Avdic S, Slobedman B . Human cytomegalovirus encoded homologs of cytokines, chemokines and their receptors: roles in immunomodulation. Viruses 2012; 4: 2448–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilkinson GW, Tomasec P, Stanton RJ, Armstrong M, Prod'homme V, Aicheler R et al. Modulation of natural killer cells by human cytomegalovirus. J Clin Virol 2008; 41: 206–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sinclair J . Manipulation of dendritic cell functions by human cytomegalovirus. Expert Rev Mol Med 2008; 10: e35.

    Article  PubMed  Google Scholar 

  9. Sinclair J . Human cytomegalovirus: latency and reactivation in the myeloid lineage. J Clin Virol 2008; 41: 180–185.

    Article  CAS  PubMed  Google Scholar 

  10. Sinclair JH, Reeves MB . Human cytomegalovirus manipulation of latently infected cells. Viruses 2013; 5: 2803–2824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Crough T, Khanna R . Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev 2009; 22: 76–98, Table of Contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Britt WJ, Mach M . Human cytomegalovirus glycoproteins. Intervirology 1996; 39: 401–412.

    Article  CAS  PubMed  Google Scholar 

  13. Macagno A, Bernasconi NL, Vanzetta F, Dander E, Sarasini A, Revello MG et al. Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128–131A complex. J Virol 2010; 84: 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  14. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 2005; 202: 673–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ariza-Heredia EJ, Nesher L, Chemaly RF . Cytomegalovirus diseases after hematopoietic stem cell transplantation: a mini-review. Cancer Lett 2014; 342: 1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kowalsky S, Arnon R, Posada R . Prevention of cytomegalovirus following solid organ transplantation: a literature review. Pediatr Transplant 2013; 17: 499–509.

    Article  PubMed  Google Scholar 

  17. Schleiss MR . Cytomegalovirus in the neonate: immune correlates of infection and protection. Clin Dev Immunol 2013; 2013: 501801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Griffiths P, Plotkin S, Mocarski E, Pass R, Schleiss M, Krause P et al. Desirability and feasibility of a vaccine against cytomegalovirus. Vaccine 2013; 31( Suppl 2): B197–B203.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tu W, Chen S, Sharp M, Dekker C, Manganello AM, Tongson EC et al. Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol 2004; 172: 3260–3267.

    Article  CAS  PubMed  Google Scholar 

  20. Cheung AK, Gottlieb DJ, Plachter B, Pepperl-Klindworth S, Avdic S, Cunningham AL et al. The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: implications for virus elimination during latency. Blood 2009; 114: 4128–4137.

    Article  CAS  PubMed  Google Scholar 

  21. Stern JL, Slobedman B . Human cytomegalovirus latent infection of myeloid cells directs monocyte migration by up-regulating monocyte chemotactic protein-1. J Immunol 2008; 180: 6577–6585.

    Article  CAS  PubMed  Google Scholar 

  22. Opal SM, DePalo VA . Anti-inflammatory cytokines. Chest 2000; 117: 1162–1172.

    Article  CAS  PubMed  Google Scholar 

  23. Reddehase MJ . Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2002; 2: 831–844.

    Article  CAS  PubMed  Google Scholar 

  24. Moutaftsi M, Mehl AM, Borysiewicz LK, Tabi Z . Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Blood 2002; 99: 2913–2921.

    Article  CAS  PubMed  Google Scholar 

  25. Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH . Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 1991; 72( Pt 9): 2059–2064.

    Article  CAS  PubMed  Google Scholar 

  26. Mendelson M, Monard S, Sissons P, Sinclair J . Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol 1996; 77: 3099–3102.

    Article  CAS  PubMed  Google Scholar 

  27. Sindre H, Tjoonnfjord GE, Rollag H, Ranneberg-Nilsen T, Veiby OP, Beck S et al. Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood 1996; 88: 4526–4533.

    Article  CAS  PubMed  Google Scholar 

  28. Poole E, Walther A, Raven K, Benedict CA, Mason GM, Sinclair J . The myeloid transcription factor GATA-2 regulates the viral UL144 gene during human cytomegalovirus latency in an isolate-specific manner. J Virol 2013; 87: 4261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rossetto CC, Tarrant-Elorza M, Pari GS . Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14+ monocytes and CD34+ cells. PLoS Pathog 2013; 9: e1003366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reeves MB, Lehner PJ, Sissons JG, Sinclair JH . An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol 2005; 86: 2949–2954.

    Article  CAS  PubMed  Google Scholar 

  31. Kondo K, Kaneshima H, Mocarski ES . Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc Natl Acad Sci USA 1994; 91: 11879–11883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hahn G, Jores R, Mocarski ES . Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci USA 1998; 95: 3937–3942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Avdic S, Cao JZ, Cheung AK, Abendroth A, Slobedman B . Viral interleukin-10 expressed by human cytomegalovirus during the latent phase of infection modulates latently infected myeloid cell differentiation. J Virol 2011; 85: 7465–7471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bego M, Maciejewski J, Khaiboullina S, Pari G, St Jeor S . Characterization of an antisense transcript spanning the UL81–82 locus of human cytomegalovirus. J Virol 2005; 79: 11022–11034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goodrum F, Reeves M, Sinclair J, High K, Shenk T . Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood 2007; 110: 937–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hargett D, Shenk TE . Experimental human cytomegalovirus latency in CD14+ monocytes. Proc Natl Acad Sci USA 2010; 107: 20039–20044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reeves MB, Sinclair JH . Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J Gen Virol 2010; 91: 599–604.

    Article  CAS  PubMed  Google Scholar 

  38. Taylor-Wiedeman J, Sissons P, Sinclair J . Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol 1994; 68: 1597–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soderberg-Naucler C, Fish KN, Nelson JA . Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 1997; 91: 119–126.

    Article  CAS  PubMed  Google Scholar 

  40. Reeves MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH . Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci USA 2005; 102: 4140–4145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stenberg RM . The human cytomegalovirus major immediate-early gene. Intervirology 1996; 39: 343–349.

    Article  CAS  PubMed  Google Scholar 

  42. Spector DH . Activation and regulation of human cytomegalovirus early genes. Intervirology 1996; 39: 361–377.

    Article  CAS  PubMed  Google Scholar 

  43. Colberg-Poley AM . Functional roles of immediate early proteins encoded by the human cytomegalovirus UL36–38, UL115–119, TRS1/IRS1 and US3 loci. Intervirology 1996; 39: 350–360.

    Article  CAS  PubMed  Google Scholar 

  44. Gatherer D, Seirafian S, Cunningham C, Holton M, Dargan DJ, Baluchova K et al. High-resolution human cytomegalovirus transcriptome. Proc Natl Acad Sci USA 2011; 108: 19755–19760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheung AK, Abendroth A, Cunningham AL, Slobedman B . Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood 2006; 108: 3691–3699.

    Article  CAS  PubMed  Google Scholar 

  46. Goodrum FD, Jordan CT, High K, Shenk T . Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci USA 2002; 99: 16255–16260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poole E, Wills M, Sinclair J . Human cytomegalovirus latency: targeting differences in the latently infected cell with a view to clearing latent infection. New J Sci 2014; 2014: 313761.

    Article  CAS  Google Scholar 

  48. Albright ER, Kalejta RF . Myeloblastic cell lines mimic some but not all aspects of human cytomegalovirus experimental latency defined in primary CD34+ cell populations. J Virol 2013; 87: 9802–9812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beisser PS, Laurent L, Virelizier JL, Michelson S . Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J Virol 2001; 75: 5949–5957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hook L, Hancock M, Landais I, Grabski R, Britt W, Nelson JA . Cytomegalovirus microRNAs. Curr Opin Virol 2014; 7C: 40–6.

    Article  Google Scholar 

  51. Grey F, Meyers H, White EA, Spector DH, Nelson J . A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 2007; 3: e163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ . Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA 2008; 105: 5453–5458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stern-Ginossar N, Saleh N, Goldberg MD, Prichard M, Wolf DG, Mandelboim O . Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 2009; 83: 10684–10693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317: 376–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim S, Lee S, Shin J, Kim Y, Evnouchidou I, Kim D et al. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 2011; 12: 984–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim Y, Lee S, Kim S, Kim D, Ahn JH, Ahn K . Human cytomegalovirus clinical strain-specific microRNA miR-UL148D targets the human chemokine RANTES during infection. PLoS Pathog 2012; 8: e1002577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen ZZ, Pan X, Miao LF, Ye HQ, Chavanas S, Davrinche C et al. Comprehensive analysis of human cytomegalovirus microRNA expression during lytic and quiescent infection. PloS One 2014; 9: e88531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fu M, Gao Y, Zhou Q, Zhang Q, Peng Y, Tian K et al. Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 2014; 536: 272–278.

    Article  CAS  PubMed  Google Scholar 

  59. Maciejewski JP, Bruening EE, Donahue RE, Mocarski ES, Young NS, St Jeor SC . Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood 1992; 80: 170–178.

    Article  CAS  PubMed  Google Scholar 

  60. Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR . Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 1996; 70: 78–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mason GM, Poole E, Sissons JG, Wills MR, Sinclair JH . Human cytomegalovirus latency alters the cellular secretome, inducing cluster of differentiation CD4+ T-cell migration and suppression of effector function. Proc Natl Acad Sci USA 2012; 109: 14538–14543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Poole E, McGregor Dallas SR, Colston J, Joseph RS, Sinclair J . Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34+ progenitors. J Gen Virol. 2011; 92: 1539–1549.

    Article  CAS  PubMed  Google Scholar 

  63. Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L et al. Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 1998; 188: 855–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jenkins C, Abendroth A, Slobedman B . A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J Virol 2004; 78: 1440–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jenkins C, Garcia W, Godwin MJ, Spencer JV, Stern JL, Abendroth A et al. Immunomodulatory properties of a viral homolog of human interleukin-10 expressed by human cytomegalovirus during the latent phase of infection. J Virol 2008; 82: 3736–3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Benedict CA, Butrovich KD, Lurain NS, Corbeil J, Rooney I, Schneider P et al. Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J Immunol 1999; 162: 6967–6970.

    CAS  PubMed  Google Scholar 

  67. Locksley RM, Killeen N, Lenardo MJ . The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487–501.

    Article  CAS  PubMed  Google Scholar 

  68. Ware CF . The TNF superfamily. Cytokine Growth Factor Rev 2003; 14: 181–184.

    Article  CAS  PubMed  Google Scholar 

  69. Poole E, King CA, Sinclair JH, Alcami A . The UL144 gene product of human cytomegalovirus activates NFkappaB via a TRAF6-dependent mechanism. EMBO J 2006; 25: 4390–4399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheung TC, Humphreys IR, Potter KG, Norris PS, Shumway HM, Tran BR et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci USA 2005; 102: 13218–13223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Poole E, Atkins E, Nakayama T, Yoshie O, Groves I, Alcami A et al. NF-kappaB-mediated activation of the chemokine CCL22 by the product of the human cytomegalovirus gene UL144 escapes regulation by viral IE86. J Virol 2008; 82: 4250–4256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Poole E, Groves I, MacDonald A, Pang Y, Alcami A, Sinclair J . Identification of TRIM23 as a cofactor involved in the regulation of NF-kappaB by human cytomegalovirus. J Virol 2009; 83: 3581–3590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dumortier J, Streblow DN, Moses AV, Jacobs JM, Kreklywich CN, Camp D et al. Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. J Virol 2008; 82: 6524–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fiorentini S, Luganini A, Dell'Oste V, Lorusso B, Cervi E, Caccuri F et al. Human cytomegalovirus productively infects lymphatic endothelial cells and induces a secretome that promotes angiogenesis and lymphangiogenesis through interleukin-6 and granulocyte-macrophage colony-stimulating factor. J Gen Virol 2011; 92: 650–660. Epub 2010/12/03.

    Article  CAS  PubMed  Google Scholar 

  75. Noriega VM, Haye KK, Kraus TA, Kowalsky SR, Ge Y, Moran TM et al. Human cytomegalovirus modulates monocyte-mediated innate immune responses during short-term experimental latency in vitro. J Virol 2014; in press.

  76. Mason GM, Jackson S, Okecha G, Poole E, Sissons JG, Sinclair J et al. Human cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4+ T cells. PLoS Pathog 2013; 9: e1003635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tey SK, Goodrum F, Khanna R . CD8+ T-cell recognition of human cytomegalovirus latency-associated determinant pUL138. J Gen Virol 2010; 91: 2040–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Crompton L, Khan N, Khanna R, Nayak L, Moss PA . CD4+ T cells specific for glycoprotein B from cytomegalovirus exhibit extreme conservation of T-cell receptor usage between different individuals. Blood 2008; 111: 2053–2061.

    Article  CAS  PubMed  Google Scholar 

  79. Marshall NA, Vickers MA, Barker RN . Regulatory T cells secreting IL-10 dominate the immune response to EBV latent membrane protein 1. J Immunol 2003; 170: 6183–6189.

    Article  CAS  PubMed  Google Scholar 

  80. Jones M, Ladell K, Wynn KK, Stacey MA, Quigley MF, Gostick E et al. IL-10 restricts memory T cell inflation during cytomegalovirus infection. J Immunol 2010; 185: 3583–3592.

    Article  CAS  PubMed  Google Scholar 

  81. Humphreys IR, de Trez C, Kinkade A, Benedict CA, Croft M, Ware CF . Cytomegalovirus exploits IL-10-mediated immune regulation in the salivary glands. J Exp Med 2007; 204: 1217–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Vries JJ, van Zwet EW, Dekker FW, Kroes AC, Verkerk PH, Vossen AC . The apparent paradox of maternal seropositivity as a risk factor for congenital cytomegalovirus infection: a population-based prediction model. Rev Med Virol 2013; 23: 241–249.

    Article  PubMed  Google Scholar 

  83. Froberg MK . Review: CMV escapes! Ann Clin Lab Sci 2004; 34: 123–130.

    CAS  PubMed  Google Scholar 

  84. Aubert G, Hassan-Walker AF, Madrigal JA, Emery VC, Morte C, Grace S et al. Cytomegalovirus-specific cellular immune responses and viremia in recipients of allogeneic stem cell transplants. J Infect Dis 2001; 184: 955–963.

    Article  CAS  PubMed  Google Scholar 

  85. Gratama JW, van Esser JW, Lamers CH, Tournay C, Lowenberg B, Bolhuis RL et al. Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 2001; 98: 1358–1364.

    Article  CAS  PubMed  Google Scholar 

  86. Cwynarski K, Ainsworth J, Cobbold M, Wagner S, Mahendra P, Apperley J et al. Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 2001; 97: 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  87. Gandhi MK, Wills MR, Okecha G, Day EK, Hicks R, Marcus RE et al. Late diversification in the clonal composition of human cytomegalovirus-specific CD8+ T cells following allogeneic hemopoietic stem cell transplantation. Blood 2003; 102: 3427–3438.

    Article  CAS  PubMed  Google Scholar 

  88. Kenneson A, Cannon MJ . Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 2007; 17: 253–276.

    Article  PubMed  Google Scholar 

  89. de Vries JJ, Korver AM, Verkerk PH, Rusman L, Claas EC, Loeber JG et al. Congenital cytomegalovirus infection in the Netherlands: birth prevalence and risk factors. J Med Virol 2011; 83: 1777–1782.

    Article  PubMed  Google Scholar 

  90. Mussi-Pinhata MM, Yamamoto AY, Moura Brito RM, de Lima Isaac M, de Carvalho e Oliveira PF, Boppana S et al. Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin Infect Dis 2009; 49: 522–528.

    Article  PubMed  Google Scholar 

  91. Krause PR, Bialek SR, Boppana SB, Griffiths PD, Laughlin CA, Ljungman P et al. Priorities for CMV vaccine development. Vaccine 2013; 32: 4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Weekes MP, Tan SY, Poole E, Talbot S, Antrobus R, Smith DL et al. Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. Science 2013; 340: 199–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Murphy JC, Fischle W, Verdin E, Sinclair JH . Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 2002; 21: 1112–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. West AC, Johnstone RW . New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 2014; 124: 30–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barton KM, Burch BD, Soriano-Sarabia N, Margolis DM . Prospects for treatment of latent HIV. Clin Pharmacol Ther 2013; 93: 46–56.

    Article  CAS  PubMed  Google Scholar 

  96. Kent SJ, Reece JC, Petravic J, Martyushev A, Kramski M, de Rose R et al. The search for an HIV cure: tackling latent infection. Lancet Infect Dis 2013; 13: 614–621.

    Article  PubMed  Google Scholar 

  97. Siliciano JD, Siliciano RF . HIV-1 eradication strategies: design and assessment. Curr Opin HIV AIDS 2013; 8: 318–325.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank past and present members of our laboratories who have contributed to this review. Due to space limitations, we apologize to colleagues whose work may not have been directly cited. This work was funded by British Medical Research Council Grant JS and MW (G0701279 and MR/K021087/1) and supported by the NIHR Cambridge BRC Cell Phenotyping hub.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R Wills.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wills, M., Poole, E., Lau, B. et al. The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies?. Cell Mol Immunol 12, 128–138 (2015). https://doi.org/10.1038/cmi.2014.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.75

Keywords

This article is cited by

Search

Quick links