Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

E1A, E1B double-restricted replicative adenovirus at low dose greatly augments tumor-specific suicide gene therapy for gallbladder cancer

Abstract

Combination therapy with replicative oncolytic viruses is a recent topic in innovative cancer therapy, but few studies have examined the efficacy of oncolytic adenovirus plus replication-deficient adenovirus carrying a suicide gene. We aim to evaluate whether an E1A, E1B double-restricted oncolytic adenovirus, AxdAdB-3, can improve the efficacy for gallbladder cancers (GBCs) of the replication-deficient adenovirus-based herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) therapy directed by the carcinoembryonic antigen (CEA) promoter. Cytopathic effects of AxdAdB-3 plus AxCEAprTK (an adenovirus expressing HSVtk directed by CEA promoter) or AxCAHSVtk (an adenovirus expressing HSVtk directed by a nonspecific CAG promoter) with GCV administration were examined in several GBC lines and normal cells. Efficacy in vivo was tested in severe combined immunodeficiency disease mice with GBC xenografts. Addition of AxdAdB-3 (1 multiplicity of infection, MOI) significantly enhanced the cytopathic effects of AxCEAprTK (10 MOI)/GCV on GBC cells. The augmented effect was attributable to the replication of the AxCEAprTK and also to the enhanced CEA promoter activity, which was presumably transactivated by E1A. In normal cells, AxdAdB-3 (20 MOI) plus AxCEAprTK (200 MOI)/GCV was not cytopathic, whereas AxdAdB-3 (1 MOI) plus AxCAHSVtk (10 MOI)/GCV was significantly toxic. Low-dose AxdAdB-3 (2 × 107 PFU, plaque-forming unit) plus AxCEAprTK (2 × 108 PFU)/GCV significantly suppressed the growth of GBC xenografts as compared with either AxdAdB-3 (2 × 107 PFU)/GCV or AxCEAprTK (2 × 109 PFU)/GCV alone. E1A, E1B double-restricted replicating adenovirus at low dose significantly augmented the efficacy of CEA promoter-directed HSVtk/GCV therapy without obvious toxicity to normal cells, suggesting a potential use of this combination for treating GBC and other CEA-producing malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

Ad:

adenovirus

CAG:

chicken β-actin enhancer β-globin promoter

CEA:

carcinoembryonic antigen

CPE:

cytopathic effect

CRAd:

conditionally replicative adenovirus

5-FU:

5-fluorouracil

GB:

gallbladder

GBC:

gallbladder cancer

GCV:

ganciclovir

HSVtk:

herpes simplex virus thymidine kinase gene

i.p.:

intraperitoneally

i.t.:

intratumorally

MOI:

multiplicity of infection

pRb:

retinoblastoma protein

PFU:

plaque-forming unit(s)

s.c.:

subcutaneously

SCID:

severe combined immunodeficiency disease

SV40:

senminum virus 40

References

  1. Misra S, Chaturvedi A, Misra NC, Sharma ID . Carcinoma of the gallbladder. Lancet Oncol 2003; 4: 167–176.

    Article  PubMed  Google Scholar 

  2. Donohue JH, Stewart AK, Menck HR . The national cancer data base report on carcinoma of the gallbladder, 1989–1995. Cancer 1998; 83: 2618–2628.

    Article  CAS  PubMed  Google Scholar 

  3. Osaki T, Tanio Y, Tachibana I, Hosoe S, Kumagai T, Kawase I et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 1994; 54: 5258–5261.

    CAS  PubMed  Google Scholar 

  4. Tanaka T, Kanai F, Okabe S, Yoshida Y, Wakimoto H, Hamada H et al. Adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing human gastric carcinoma cells in vitro. Cancer Res 1996; 56: 1341–1345.

    CAS  PubMed  Google Scholar 

  5. Tanaka T, Kanai F, Lan K-H, Ohashi M, Shiratori Y, Yoshida Y et al. Adenovirus-mediated gene therapy of gastric carcinoma using cancer-specific gene expression in vivo. Biochem Biophys Res Commun 1997; 231: 775–779.

    Article  CAS  PubMed  Google Scholar 

  6. Brand K, Loser P, Arnold W, Bartels T, Strauss M . Tumor cell-specific transgene expression prevents liver toxicity of the adeno-HSVtk/GCV approach. Gene Ther 1998; 5: 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  7. Kaneko S, Hallenbeck P, Kotani T, Nakabayashi H, McGarrity G, Tamaoki T et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res 1995; 55: 5283–5287.

    CAS  PubMed  Google Scholar 

  8. Hammarstrom S . The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999; 9: 67–81.

    Article  CAS  PubMed  Google Scholar 

  9. Kijima T, Osaki T, Nishino K, Kumagai T, Funakoshi T, Goto H et al. Application of the Cre recombinase/lox P system further enhances antitumor effects in cell type-specific gene therapy against carcinoembryonic antigen-producing cancer. Cancer Res 1999; 59: 4906–4911.

    CAS  PubMed  Google Scholar 

  10. Nyati MK, Sreekumar A, Li S, Zhang M, Rynkiewicz SD, Chinnaiyan AM et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer. Cancer Res 2002; 62: 2337–2342.

    CAS  PubMed  Google Scholar 

  11. Koch PE, Guo ZS, Kagawa S, Gu J, Roth JA, Fang B . Augmented transgene expression from carcinoembryonic antigen (CEA) promoter via a GAL4 gene-regulatory system. Mol Ther 2001; 3: 278–283.

    Article  CAS  PubMed  Google Scholar 

  12. Chiocca EA . Oncolytic viruses. Nat Rev 2002; 2: 938–950.

    Article  Google Scholar 

  13. Everts B, van der Poel HG . Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther 2005; 12: 141–161.

    Article  CAS  PubMed  Google Scholar 

  14. Ries S, Korn WM . ONYX-015: mechanism of action and clinical potential of a replication-selective adenovirus. Br J Cancer 2002; 86: 5–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. A controlled trial of intratumoral ONYX-015, a selectively replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  16. Heise C, Hermiston T, Johnson L, Brooks G, Jhoannes AS, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  17. Doronin S, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WSM . Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, Hausen H . Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72: 9470–9478.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 1999; 73: 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Makower D, Rozenblit A, Kaufman H, Edelman M, Lane ME, Zwiebel J et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res 2003; 9: 693–702.

    PubMed  Google Scholar 

  21. Wadler S, Yu B, Tan J-Y, Kaleya R, Rozenblit A, Makower D et al. Persistent replication of the modified chimeric adenovirus ONYX-015 in both tumor and stromal cells from a patient with gallbladder carcinoma implants. Clin Cancer Res 2003; 9: 33–43.

    CAS  PubMed  Google Scholar 

  22. Fukuda K, Abei M, Ugai H, Seo E, Wakayama M, Murata T et al. E1A, E1B double-restricted oncolytic adenovirusfor gene therapy of gallbladder cancer. Cancer Res 2003; 63: 4434–4440.

    CAS  PubMed  Google Scholar 

  23. Gomez-Manzano C, Balague C, Alemany R, Lemoine MG, Mitlianga P, Jiang H et al. A novel E1A-E1B mutant adenovirus induces glioma regression in vivo. Oncogene 2004; 23: 1821–1828.

    Article  CAS  PubMed  Google Scholar 

  24. Chu RL, Post DE, Khuri FR, Van Meir EG . Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2004; 10: 5299–5312.

    Article  CAS  PubMed  Google Scholar 

  25. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double-suicide gene, and radiotherapy. Human Gene Ther 1998; 9: 1323–1333.

    Article  CAS  Google Scholar 

  26. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO . Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Human Gene Ther 2000; 11: 67–76.

    Article  CAS  Google Scholar 

  27. Wildner O, Blaese RM, Morris JC . Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999; 59: 410–413.

    CAS  PubMed  Google Scholar 

  28. Wildner O, Morris JC, Vahanian NN, Ford Jr H, Ramsey WJ, Blaese RM . Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther 1999; 6: 57–62.

    Article  CAS  PubMed  Google Scholar 

  29. Nanda D, Vogels R, Havenga H, Azezaat CJ, Bout A, Smit PS . Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Cancer Res 2001; 61: 8743–8750.

    CAS  PubMed  Google Scholar 

  30. Morris JC, Wildner O . Therapy of head and neck squamous cell carcinoma with an oncolytic adenovirus expressing HSV-tk. Mol Ther 2000; 1: 56–62.

    Article  CAS  PubMed  Google Scholar 

  31. Wildner O, Morris JC . The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: assessment of antitumor efficacy and toxicity. Cancer Res 2000; 60: 4167–4174.

    CAS  PubMed  Google Scholar 

  32. Lambright ES, Amin K, Wiewrodt R, Force SD, Lanuti M, Propert KJ, et al. Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumor efficacy. Gene Ther 2001; 8: 946–953.

    Article  CAS  PubMed  Google Scholar 

  33. Seo E, Abei M, Wakayama M, Fukuda K, Ugai H, Murata T et al. Effective gene therapy for biliary tract cancer by a conditionally replicative adenovirus carrying uracil phosphoribosyltransferase (UPRT) gene: Significance of timing of 5-fluorouracil administration. Cancer Res 2005; 65: 546–552.

    Article  CAS  PubMed  Google Scholar 

  34. Kamel D, Paakko P, Nuorva K, Vahakangas K, Soini Y . p53 and c-erbB-2 protein expression in adenocarcinomas and epithelial dysplasias of the gallbladder. J Pathol 1993; 170: 67–72.

    Article  CAS  PubMed  Google Scholar 

  35. Hanada K, Itoh M, Fujii K, Tsuchida A, Ooishi H, Kajiyama G . K-ras and p53 mutations in stage I gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct. Cancer 1996; 77: 452–458.

    Article  CAS  PubMed  Google Scholar 

  36. Caca K, Feisthammel J, Klee K, Tannapeel A, Witzigmann H, Wittekind C et al. Inactivation of the INK4A/ARF locus and p53 in sporadic extrahepatic bile duct cancers and bile tract cancer cell lines. Int J Cancer 2002; 97: 481–488.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshida S, Todoroki T, Ichikawa Y, Hanai S, Suzuki H, Hori M et al. Mutations of p16Ink4/CDKN2 and p15Ink4B/MTS2 gene in biliary tract cancers. Cancer Res 1995; 55: 2756–2760.

    CAS  PubMed  Google Scholar 

  38. Shi YZ, Hui AM, Li X, Takayama T, Makuuchi M . Overexpression of retinoblastoma protein predicts decreased survival and correlates with loss of p16INK4 protein in gallbladder carcinomas. Clin Cancer Res 2000; 6: 4096–4100.

    CAS  PubMed  Google Scholar 

  39. Maxwell P, Davis RI, Sloan J . Carcinoembryonic antigen (CEA) in benign and malignant epithelium of the gallbladder, extrahepatic bile ducts, and ampulla of Vater. J Pathol 1993; 170: 73–76.

    Article  CAS  PubMed  Google Scholar 

  40. Shinoura N, Yoshida Y, Tsunoda R, Ohashi M, Zhang W, Asai A et al. Highly augmented cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res 1999; 59: 3411–3416.

    CAS  PubMed  Google Scholar 

  41. Katho S, Ozawa K, Kondoh S, Soeda E, Israel A, Shiroki K et al. Identification of sequences responsible for positive and negative regulation by E1A in the promoter of H-2Kbml class I MHC gene. EMBO J 1990; 9: 127–135.

    Article  Google Scholar 

  42. Alemany R, Lai S, Lou Y-C, Jan H-Y, Fang X, Zhang W-W . Complementary adenoviral vectors for oncolysis. Cancer Gene Ther 1999; 6: 21–25.

    Article  CAS  PubMed  Google Scholar 

  43. Motoi F, Sunamura M, Ding L, Duda DG, Yoshida Y, Zhang W et al. Effective gene therapy for pancreatic cancer by cytokines mediated by restricted replication-competent adenovirus. Hum Gene Ther 2000; 11: 223–235.

    Article  CAS  PubMed  Google Scholar 

  44. Nagayama Y, Nakao K, Hayakawa T, Niwa M . Enhanced antitumor effect of combined replicative adenovirus and nonreplicative adenovirus expressing interleukin-12 in an immunocompetent mouse model. Gene Ther 2003; 10: 1400–1403.

    Article  CAS  PubMed  Google Scholar 

  45. Lee C-T, Park K-H, Yanagisawa K, Adachi Y, Ohm JF, Nadaf S et al. Combination therapy with conditionally replicative adenovirus and replication defective adenovirus. Cancer Res 2004; 64: 6660–6665.

    Article  CAS  PubMed  Google Scholar 

  46. Liu F, Green MR . Promoter targeting by adenovirus E1A through interaction with different cellular DNA-binding domains. Nature 1994; 368: 520–525.

    Article  CAS  PubMed  Google Scholar 

  47. Flint J, Shenk T . Viral transactivating proteins. Annu Rev Genet 1997; 31: 177–212.

    Article  CAS  PubMed  Google Scholar 

  48. Hauck W, Stanners CP . Transcriptional regulation of the carcinoembryonic antigen gene. J Biol Chem 1995; 8: 3602–3610.

    Article  Google Scholar 

  49. Thomas MA, Spencer JF, La Regina MC, Dhar D, Tollefson AE, Toth K et al. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res 2006; 66: 1270–1276.

    Article  CAS  PubMed  Google Scholar 

  50. Sherr CJ, McCormick F . The Rb and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Abei and Dr Yokoyama are supported by Grants-In-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Abei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, K., Abei, M., Ugai, H. et al. E1A, E1B double-restricted replicative adenovirus at low dose greatly augments tumor-specific suicide gene therapy for gallbladder cancer. Cancer Gene Ther 16, 126–136 (2009). https://doi.org/10.1038/cgt.2008.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.67

Keywords

This article is cited by

Search

Quick links