Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chaperonin overexpression promotes genetic variation and enzyme evolution

Abstract

Most protein mutations, and mutations that alter protein functions in particular, undermine stability and are therefore deleterious. Chaperones, or heat-shock proteins, are often implicated in buffering mutations, and could thus facilitate the acquisition of neutral genetic diversity and the rate of adaptation. We examined the ability of the Escherichia coli GroEL/GroES chaperonins to buffer destabilizing and adaptive mutations. Here we show that mutational drifts performed in vitro with four different enzymes indicated that GroEL/GroES overexpression doubled the number of accumulating mutations, and promoted the folding of enzyme variants carrying mutations in the protein core and/or mutations with higher destabilizing effects (destabilization energies of >3.5 kcal mol -1, on average, versus 1 kcal mol -1 in the absence of GroEL/GroES). The divergence of modified enzymatic specificity occurred much faster under GroEL/GroES overexpression, in terms of the number of adapted variants (2-fold) and their improved specificity and activity (10-fold). These results indicate that protein stability is a major constraint in protein evolution, and buffering mechanisms such as chaperonins are key in alleviating this constraint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental setup.
Figure 2: GAPDH mutation-accumulation experiments.
Figure 3: Changes in activity and protein levels of enzyme variants expressed with and without GroEL/GroES overexpression.
Figure 4: Adaptive evolution of P. diminuta PTE towards higher esterase activity.

Similar content being viewed by others

References

  1. DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nature Rev. Genet. 6, 678–687 (2005)

    Article  CAS  Google Scholar 

  2. Wilke, C. O., Bloom, J. D., Drummond, D. A. & Raval, A. Predicting the tolerance of proteins to random amino acid substitution. Biophys. J. 89, 3714–3720 (2005)

    Article  CAS  Google Scholar 

  3. Zeldovich, K. B., Chen, P. & Shakhnovich, E. I. Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc. Natl Acad. Sci. USA 104, 16152–16157 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002)

    Article  CAS  Google Scholar 

  5. Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLOS Comput. Biol. 4, e1000002 (2008)

    Article  ADS  Google Scholar 

  6. Wagner, A. Robustness and Evolvability in Living Systems. (Princeton Univ. Press, 2005)

    Google Scholar 

  7. Martin, J. & Hartl, F. U. Chaperone-assisted protein folding. Curr. Opin. Struct. Biol. 7, 41–52 (1997)

    Article  CAS  Google Scholar 

  8. Thirumalai, D. & Lorimer, G. H. Chaperonin-mediated protein folding. Annu. Rev. Biophys. Biomol. Struct. 30, 245–269 (2001)

    Article  CAS  Google Scholar 

  9. Fares, M. A., Moya, A. & Barrio, E. GroEL and the maintenance of bacterial endosymbiosis. Trends Genet. 20, 413–416 (2004)

    Article  CAS  Google Scholar 

  10. Rutherford, S. L. Between genotype and phenotype: protein chaperones and evolvability. Nature Rev. Genet. 4, 263–274 (2003)

    Article  CAS  Google Scholar 

  11. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26, 348–362 (2004)

    Article  CAS  Google Scholar 

  14. Van Dyk, T. K., Gatenby, A. A. & LaRossa, R. A. Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 342, 451–453 (1989)

    Article  ADS  CAS  Google Scholar 

  15. Fares, M. A., Ruiz-González, M. X., Moya, A., Elena, S. F. & Barrio, E. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417, 398 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Maisnier-Patin, S. et al. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nature Genet. 37, 1376–1379 (2005)

    Article  CAS  Google Scholar 

  17. Cowen, L. E. & Lindquist, S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185–2189 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Sangster, T. A. & Queitsch, C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr. Opin. Plant Biol. 8, 86–92 (2005)

    Article  CAS  Google Scholar 

  19. Bobula, J. et al. Why molecular chaperones buffer mutational damage: a case study with a yeast Hsp40/70 system. Genetics 174, 937–944 (2006)

    Article  CAS  Google Scholar 

  20. Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli . Cell 122, 209–220 (2005)

    Article  CAS  Google Scholar 

  21. Persson, M., Carlsson, U. & Bergenhem, N. C. GroEL reversibly binds to, and causes rapid inactivation of, human carbonic anhydrase II at high temperatures. Biochim. Biophys. Acta 1298, 191–198 (1996)

    Article  CAS  Google Scholar 

  22. Chapman, E. et al. Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. Proc. Natl Acad. Sci. USA 103, 15800–15805 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Bershtein, S., Golding, K. & Tawfik, D. Intense drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379, 1029–1044 (2008)

    Article  CAS  Google Scholar 

  24. Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L. & Tawfik, D. S. The stability effects of protein mutations appear to be universally distributed. J. Mol. Biol. 369, 1318–1332 (2007)

    Article  CAS  Google Scholar 

  25. Sasidharan, R. & Chothia, C. The selection of acceptable protein mutations. Proc. Natl Acad. Sci. USA 104, 10080–10085 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Amitai, G., Gupta, R. A. & Tawfik, D. S. Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP Journal 1, 67–78 (2007)

    Article  CAS  Google Scholar 

  27. McLoughlin, S. Y. & Copley, S. D. A compromise required by gene sharing enables survival: implications for evolution of new enzyme activities. Proc. Natl Acad. Sci. USA 105, 13497–13502 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Roodveldt, C. & Tawfik, D. S. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Biochemistry 44, 12728–12736 (2005)

    Article  CAS  Google Scholar 

  29. Le Rouzic, A. & Carlborg, O. Evolutionary potential of hidden genetic variation. Trends Ecol. Evol. 23, 33–37 (2007)

    Article  Google Scholar 

  30. Fontana, W. & Schuster, P. Continuity in evolution: on the nature of transitions. Science 280, 1451–1455 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006)

    Article  ADS  CAS  Google Scholar 

  32. Yue, P., Li, Z. & Moult, J. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 353, 459–473 (2005)

    Article  CAS  Google Scholar 

  33. Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. & Taddei, F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. Natl Acad. Sci. USA 105, 3076–3081 (2008)

    Article  ADS  CAS  Google Scholar 

  34. Noivirt-Brik, O., Unger, R. & Horovitz, A. Low folding propensity and high translation efficiency distinguish in vivo substrates of GroEL from other Escherichia coli proteins. Bioinformatics 23, 3276–3279 (2007)

    Article  CAS  Google Scholar 

  35. Radman, M., Matic, I. & Taddei, F. Evolution of evolvability. Ann. NY Acad. Sci. 870, 146–155 (1999)

    Article  ADS  CAS  Google Scholar 

  36. Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997)

    Article  ADS  CAS  Google Scholar 

  37. Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli . Cell 122, 209–220 (2005)

    Article  CAS  Google Scholar 

  38. Roodveldt, C. & Tawfik, D. S. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Biochemistry 44, 12728–12736 (2005)

    Article  CAS  Google Scholar 

  39. Roodveldt, C. & Tawfik, D. S. Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Protein Eng. Des. Sel. 18, 51–58 (2005)

    Article  CAS  Google Scholar 

  40. Aharoni, A. et al. Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proc. Natl Acad. Sci. USA 101, 482–487 (2004)

    Article  ADS  CAS  Google Scholar 

  41. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005)

    Article  CAS  Google Scholar 

  42. Gould, S. M. & Tawfik, D. S. Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochemistry 44, 5444–5452 (2005)

    Article  CAS  Google Scholar 

  43. Nishihara, K., Kanemori, M., Kitagawa, M., Yanagi, H. & Yura, T. Chaperone coexpression plasmids: differential and synergistic roles of DnaK–DnaJ–GrpE and GroEL–GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli . Appl. Environ. Microbiol. 64, 1694–1699 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Misset, O. & Opperdoes, F. R. Simultaneous purification of hexokinase, class-I fructose-bisphosphate aldolase, triosephosphate isomerase and phosphoglycerate kinase from Trypanosoma brucei . Eur. J. Biochem. 144, 475–483 (1984)

    Article  CAS  Google Scholar 

  45. Yifrach, O. & Horovitz, A. Transient kinetic analysis of adenosine 5′-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL. Biochemistry 37, 7083–7088 (1998)

    Article  CAS  Google Scholar 

  46. Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002)

    Article  CAS  Google Scholar 

  47. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005)

    Article  CAS  Google Scholar 

  48. Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L. & Tawfik, D. S. The stability effects of protein mutations appear to be universally distributed. J. Mol. Biol. 369, 1318–1332 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the EU via the MiFEM consortium, NIH grant number W81XWH-07-2-0020, and Israel Science Foundation are gratefully acknowledged. We are thankful to P. Goloubinoff for his advice, V. Kolotonouv for technical assistance, L. Serrano for the use of FoldX, and A. Horovitz and S. Rutherford for their help in refining this manuscript.

Author Contributions N.T. and D.S.T. designed the study, analysed the data and wrote the manuscript. N.T. performed the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan S. Tawfik.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-8 and Supplementary Figures 1-5 with Legends. (PDF 22949 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokuriki, N., Tawfik, D. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459, 668–673 (2009). https://doi.org/10.1038/nature08009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing