Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease

Abstract

Adoptive transfer of T cells reactive to minor histocompatibility antigens has the unmatched ability to eradicate malignant hematopoietic cells. Unfortunately, its use is hampered by the associated graft-versus-host disease. The critical issue of a possible dissociation of the antileukemic effect and graft-versus-host disease by targeting specific minor histocompatibility antigens remains unresolved because of the unknown nature and number of minor histocompatibility antigens necessary or sufficient to elicit anti-leukemic activity and graft-versus-host disease. We found that injection of T lymphocytes primed against a single major histocompatibility complex class I-restricted immunodominant minor histocompatibility antigen (B6dom1) caused no graft-versus-host disease but produced a curative anti-leukemic response. Avoidance of graft-versus-host disease required that no other host-reactive T cells be co-injected with T cells primed with B6dom1. Here we show that effective and non-toxic immunotherapy of hematologic malignancies can be achieved by targeting a single immunodominant minor histocompatibility antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival of primed and unprimed mice following i.v. injection of 1× 105 EL4 cells
Figure 2: Assessment of B6dom1-specific CD8+ T cells by staining with B6dom1/Db tetramers.
Figure 3: B6dom1 is expressed on both hematopoietic and non-hematopoietic cells.
Figure 4: Adoptive transfer of B6dom1-primed T cells eradicates EL4 cells.

Similar content being viewed by others

References

  1. Rosenberg, S.A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287 (1999).

    Article  CAS  Google Scholar 

  2. Van den Eynde, B.J. & van der Bruggen, P. T cell defined tumor antigens. Curr. Opin. Immunol. 9, 684–693 (1997).

    Article  CAS  Google Scholar 

  3. Staveley-O'Carroll, K. et al. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc. Natl. Acad. Sci. USA 95, 1178–1183 (1998).

    Article  CAS  Google Scholar 

  4. Lee, P.P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med. 5, 677–685 (1999).

    Article  CAS  Google Scholar 

  5. Perreault, C., Roy, D.C. & Fortin, C. Immunodominant minor histocompatibility antigens: The major ones. Immunol. Today 19, 69–74 (1998).

    Article  CAS  Google Scholar 

  6. Horowitz, M.M. et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990).

    CAS  Google Scholar 

  7. Kolb, H.J. et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86, 2041–2050 (1995).

    CAS  Google Scholar 

  8. Gale, R.P. et al. Identical-twin bone marrow transplants for leukemia. Ann. Intern. Med. 120, 646–652 (1994).

    Article  CAS  Google Scholar 

  9. Barrett, A.J. et al. Effect of nucleated marrow cell dose on relapse and survival in identical twin bone marrow transplants for leukemia. Blood 95, 3323–3327 (2000).

    CAS  PubMed  Google Scholar 

  10. Collins, R.H.J. et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol. 15, 433–444 (1997).

    Article  Google Scholar 

  11. Drobyski, W.R. et al. T-cell depletion plus salvage immunotherapy with donor leukocyte infusions as a strategy to treat chronic-phase chronic myelogenous leukemia patients undergoing HLA-identical sibling marrow transplantation. Blood 94, 434–441 (1999).

    CAS  PubMed  Google Scholar 

  12. Goulmy, E. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol. Rev. 157, 125–140 (1997).

    Article  CAS  Google Scholar 

  13. Perreault, C., Jutras, J., Roy, D.C., Filep, J.G. & Brochu, S. Identification of an immunodominant mouse minor histocompatibility antigen (MiHA). T cell response to a single dominant MiHA causes graft-versus-host disease. J. Clin. Invest. 98, 622–628 (1996).

    Article  CAS  Google Scholar 

  14. Pion, S., Christianson, G.J., Fontaine, P., Roopenian, D.C. & Perreault, C. Shaping the repertoire of cytotoxic T-lymphocyte responses: explanation for the immunodominance effect whereby cytotoxic T lymphocytes specific for immunodominant antigens prevent recognition of nondominant antigens. Blood 93, 952–962 (1999).

    CAS  PubMed  Google Scholar 

  15. Eden, P.A. et al. Biochemical and immunogenetic analysis of an immunodominant peptide (B6dom1) encoded by the classical H7 minor histocompatibility locus. J. Immunol. 162, 4502–4510 (1999).

    CAS  PubMed  Google Scholar 

  16. Pion, S., Fontaine, P., Baron, C., Gyger, M. & Perreault, C. Immunodominant minor histocompatibility antigens expressed by mouse leukemic cells can serve as effective targets for T cell immunotherapy. J. Clin. Invest. 95, 1561–1568 (1995).

    Article  CAS  Google Scholar 

  17. Johnston, J.V. et al. B7-CD28 costimulation unveils the hierarchy of tumor epitopes recognized by major histocompatibility complex class I-restricted CD8+ cytolytic T lymphocytes. J. Exp. Med. 183, 791–800 (1996).

    Article  CAS  Google Scholar 

  18. Roderick, T.H. & Guidi, J.N. Genetic variants and strains of the laboratory mouse. (eds. Lyon, M.F. & Searle, A.G.) 663–772 (Oxford University Press, Oxford, 1989).

    Google Scholar 

  19. Fontaine, P., Langlais, J. & Perreault, C. Evaluation of in vitro cytotoxic T lymphocyte assays as a predictive test for the occurrence of graft vs host disease. Immunogenetics 34, 222–226 (1991).

    Article  CAS  Google Scholar 

  20. Pion, S. et al. On the mechanisms of immunodominance in cytotoxic T lymphocyte responses to minor histocompatibility antigens. Eur. J. Immunol. 27, 421–430 (1997).

    Article  CAS  Google Scholar 

  21. Ciubotariu, R. et al. Persistent allopeptide reactivity and epitope spreading in chronic rejection of organ allografts. J. Clin. Invest. 101, 398–405 (1998).

    Article  CAS  Google Scholar 

  22. Korngold, R. & Sprent, J. Lethal GVHD across minor histocompatibility barriers: nature of the effector cells and role of the H-2 complex. Immunol. Rev. 71, 5–29 (1983).

    Article  CAS  Google Scholar 

  23. Blouin, A., Bolender, R.P. & Weibel, E.R. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J. Cell Biol. 72, 441–455 (1977).

    Article  CAS  Google Scholar 

  24. Goulmy, E. et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N. Engl. J. Med. 334, 281–285 (1996).

    Article  CAS  Google Scholar 

  25. Goulmy, E. Human minor histocompatibility antigens. Curr. Opin. Immunol. 8, 75–81 (1996).

    Article  CAS  Google Scholar 

  26. Griem, P. et al. Uneven tissue distribution of minor histocompatibility proteins versus peptides is caused by MHC expression. Cell 65, 633–640 (1991).

    Article  CAS  Google Scholar 

  27. Daar, A.S., Fuggle, S.V., Fabre, J.W., Ting, A. & Morris, P.J. The detailed distribution of HLA-A, B, C antigens in normal human organs. Transplantation 38, 287–292 (1984).

    Article  CAS  Google Scholar 

  28. Loveland, B. & Simpson, E. The non-MHC transplantation antigens: neither weak nor minor. Immunol. Today 7, 223–229 (1986).

    Article  CAS  Google Scholar 

  29. Korngold, R., Leighton, C., Mobraaten, L.E. & Berger, M.A. Inter-strain graft-vs.-host disease T-cell responses to immunodominant minor histocompatibility antigens. Biol. Blood Marrow Transplant. 3, 57–64 (1997).

    CAS  PubMed  Google Scholar 

  30. Mutis, T. et al. Feasibility of immunotherapy of relapsed leukemia with ex vivo- generated cytotoxic T lymphocytes specific for hematopoietic system- restricted minor histocompatibility antigens. Blood 93, 2336–2341 (1999).

    CAS  Google Scholar 

  31. Franco, A. et al. Epitope affinity for MHC class I determines helper requirement for CTL priming. Nature Immunol. 1, 145–150 (2000).

    Article  CAS  Google Scholar 

  32. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  Google Scholar 

  33. Brochu, S., Rioux-Massé, B., Roy, J., Roy, D.C. & Perreault, C. Massive activation-induced cell death of alloreactive T cells with apoptosis of bystander postthymic T cells prevents immune reconstitution in mice with graft-versus-host disease. Blood 94, 390–400 (1999).

    CAS  PubMed  Google Scholar 

  34. Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  Google Scholar 

  35. Dulude, G., Roy, D.C. & Perreault, C. The effect of graft-versus-host disease on T cell production and homeostasis. J. Exp. Med. 189, 1329–1342 (1999).

    Article  CAS  Google Scholar 

  36. Cheever, M.A. & Chen, W. Therapy with cultured T cells: principles revisited. Immunol. Rev. 157, 177–194 (1997).

    Article  CAS  Google Scholar 

  37. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  Google Scholar 

  38. Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.D. Altman for advice on the preparation of H2Db-peptide tetramers; C. Fortin for help with statistical analyses; P.M. Huet for advice on liver cell populations; P. Eden for thoughtful review of the manuscript; Compatigene Inc. for sharing their cell culture and HPLC facilities; the CANVAC Tetramer Core Facility for a gift of plasmid clones; and J.A. Kashul for editorial assistance. Grant 011189 from the National Cancer Institute of Canada supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Perreault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontaine, P., Roy-Proulx, G., Knafo, L. et al. Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nat Med 7, 789–794 (2001). https://doi.org/10.1038/89907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing